试题
题目:
如图所示,点E,F在正方形ABCD的边BC,CD上,AE,BF相交于点G,BE=CF,求证:(1)AE=BF;(2)AE⊥BF.
答案
证明:(1)∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
∵BE=CF,
∴△ABE≌△BCF.
∴AE=BF.
(2)∵∠BAE=∠CBF,∠BAE+∠AEB=90°,
∴∠CBF+∠AEB=90°.
∴∠BGE=90°.
∴AE⊥BF.
证明:(1)∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
∵BE=CF,
∴△ABE≌△BCF.
∴AE=BF.
(2)∵∠BAE=∠CBF,∠BAE+∠AEB=90°,
∴∠CBF+∠AEB=90°.
∴∠BGE=90°.
∴AE⊥BF.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
(1)此题要先证明△ABE≌△BCF,才能得出AE=BF;
(2)由全等可知∠BAE=∠CBF,又因为∠BAE+∠AEB=90°,∠CBF+∠AEB=90°,可得∠BGE=90°,即AE⊥BF.
此题主要是根据正方形的性质得到两个三角形中有关的角相等以及线段相等,充分运用全等三角形的判定方法证明两个三角形全等,根据全等三角形的性质得到对应边相等、对应角相等.
证明题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )