试题
题目:
(1)如图1,△ABC是等边三角形,D是BC边上一点,CF平分∠ACG,E是CF上一点,若∠ADE=60°求证:DA=DE
(2)如图2,四边形ABCD是正方形,M为AB上的一点,BF平分∠CBG,E是BF上一点,若DM⊥ME,与(1)中类似的结论是什么?(不必证明)
(3)在(2)若将DM⊥ME换为MD=ME,能不能证明DM⊥ME?说明理由.
答案
证明:(1)在AB上截取AM=DC,连接MD
∵△ABC是等边三角形,
∴AB=BC,∠B=60°,
又AM=DC,
∴BM=BD,
∴△MBD为等边三角形,
∴∠AMD=∠ACG=120°,
∵CF平分∠ACG,
∴∠DCE=120°,
∴∠AMD=∠DCE,
∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∠B=∠ADE=60°,
∴∠CDE=∠MAD,
∴△AMD≌△DCE,
∴DA=DE;
(2)MD=ME;
(3)可以证明,
证明如下:连接DB并延长到N,
使BN=BE,DN交ME于点O,连接MN,
∵四边形ABCD是正方形,
∴∠ABD=45°,∠MBN=135°,
∵BF平分∠CBG,
∴∠MBE=135°,∠DBE=90°,
∴∠MBN=∠MBE,
∴△MBN≌△MBE,
∴∠MNB=∠MEB,MN=ME,
∵ME=MD,
∴MN=MD,
∴∠MNB=∠MDN,
∴∠MDN=∠MEB,
∵∠MOD=∠BOE,
∴∠DME=∠DBE=90°.
证明:(1)在AB上截取AM=DC,连接MD
∵△ABC是等边三角形,
∴AB=BC,∠B=60°,
又AM=DC,
∴BM=BD,
∴△MBD为等边三角形,
∴∠AMD=∠ACG=120°,
∵CF平分∠ACG,
∴∠DCE=120°,
∴∠AMD=∠DCE,
∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∠B=∠ADE=60°,
∴∠CDE=∠MAD,
∴△AMD≌△DCE,
∴DA=DE;
(2)MD=ME;
(3)可以证明,
证明如下:连接DB并延长到N,
使BN=BE,DN交ME于点O,连接MN,
∵四边形ABCD是正方形,
∴∠ABD=45°,∠MBN=135°,
∵BF平分∠CBG,
∴∠MBE=135°,∠DBE=90°,
∴∠MBN=∠MBE,
∴△MBN≌△MBE,
∴∠MNB=∠MEB,MN=ME,
∵ME=MD,
∴MN=MD,
∴∠MNB=∠MDN,
∴∠MDN=∠MEB,
∵∠MOD=∠BOE,
∴∠DME=∠DBE=90°.
考点梳理
考点
分析
点评
等边三角形的性质;全等三角形的判定与性质;角平分线的性质;正方形的性质.
(1)证明线段相等,最常用的方法是证明线段所在的三角形全等,本题需要作出辅助线,构造出全等三角形进行证明;
(2)根据(1)中结论可得到类似的结论:MD=ME;
(3)构造出全等三角形,利用全等三角形的性质,利用角相等可得答案.
本题考查了等边三角形的性质、全等三角形的判定及性质、角平分线的性质及正方形的性质;想法构造全等三角形是正确解答本题的关键.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )