数学
已知:如图,矩形ABCD中,BC延长线上一点E满足BE=BD,F是DE的中点,猜想∠AFC的度数并证明你的结论.
答:∠AFC=
90
90
°.
证明:
如图,在矩形ABCD中,∠BAD的平分线交BC于点E,O为对角线AC、BD的交点,且∠CAE=15°
(1)求证:△AOB为等边三角形;
(2)求∠BOE度数.
如图,在平行四边形ABCD中,E是AD的中点,CE与BA的延长线相交于F点.连接DF.
(1)求证:四边形ACDF是平行四边形.
(2)若ACDF是矩形,试探求∠1与∠2之间的关系.
小宇将两张长为8宽为2的矩形条交叉如图①,发现重叠部分可能是一个菱形.
(1)请你帮助小宇证明四边形ABCD是菱形.
(2)小宇又发现:如图②时,菱形ABCD的周长最小,等于
8
8
;
如图③时菱形ABCD的周长最大,求此时菱形ABCD的周长.
附加题:矩形ABCD的对角线AC、BD相交于点O,若AO=1,求BD.
如图所示,在矩形ABCD中,对角线AC、BD相交于点O,CE∥DB,交AD的延长线于点E,试说明AC=CE.
“三等分一个角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的,在探索中,有人曾利用过如下的图形:其中,ABCD是长方形,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠GFA,你能证明∠ECB=
1
3
∠ACB吗?
如图,已知在矩形ABCD中,AB=3,点E在BC上且∠BAE=30°,延长BC到点F使CF=BE,连接DF.
(1)判断四边形AEFD的形状,并说明理由;
(2)求DF的长度;
(3)若四边形AEFD是菱形,求菱形AEFD的面积.
如图,在矩形ABCD中,点E是AD上的一点,点F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求△AEF的面积.
如图,BD为矩形ABCD的对角线,∠ADB,∠DBC的平分线分别交于AB,CD于E,F点.
(1)求证:四边形DEBF为平行四边形;
(2)连接EF,若EF⊥BD,且AD=6,求菱形DEBF的面积.
第一页
上一页
102
103
104
105
106
下一页
最后一页
116667
116669
116671
116673
116675
116677
116679
116681
116683
116685