试题
题目:
(2002·荆门)已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O于B、D,直线DE交⊙O于C,连接BC,
(1)求证:PE∥BC;
(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.
答案
(1)证明:∵PF与⊙O相切,
∴PF2=PD·PA.
∵PE=PF,
∴PE
2
=PD·PA.
∴PE:PD=PA:PE.
∵∠APE=∠APE,
∴△EPD∽△APE.
∴∠PED=∠A.
∵∠ECB=∠A,
∴∠PED=∠ECB.
∴PE∥BC.
(2)解:PE与BC仍然平行.
证明:画图如图,
∵△EPD∽△APE,
∴∠PEA=∠D.
∵∠B=∠D,
∴∠PEA=∠B.
∴PE∥BC.
(1)证明:∵PF与⊙O相切,
∴PF2=PD·PA.
∵PE=PF,
∴PE
2
=PD·PA.
∴PE:PD=PA:PE.
∵∠APE=∠APE,
∴△EPD∽△APE.
∴∠PED=∠A.
∵∠ECB=∠A,
∴∠PED=∠ECB.
∴PE∥BC.
(2)解:PE与BC仍然平行.
证明:画图如图,
∵△EPD∽△APE,
∴∠PEA=∠D.
∵∠B=∠D,
∴∠PEA=∠B.
∴PE∥BC.
考点梳理
考点
分析
点评
专题
切割线定理;平行线的性质;相似三角形的判定与性质.
(1)根据切割线定理,PE=PF得出PE:PD=PA:PE,∠APE=∠APE得出△EPD∽△APE,再根据外接圆的性质得出内错角相等,得出PE∥BC.
(2)证明△EPD∽△APE,通过∠B=∠D得出内错角相等PE∥BC.
此题考查圆的切割线定理,外接圆的性质,相似三角形的判定和性质及平行线的判定.
几何综合题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )