试题
题目:
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
A.
1
2
B.
1
4
C.
1
8
D.
1
16
答案
D
解:∵梯形ABCD中,AD∥BC,
∴△AOD∽△COB,
∵AD=1,BC=4,
即AD:BC=1:4,
∴△AOD与△BOC的面积比等于:1:16.
故选D.
考点梳理
考点
分析
点评
相似三角形的判定与性质;梯形.
由梯形ABCD中,AD∥BC,可得△AOD∽△COB,又由AD=1,BC=4,根据相似三角形的面积比等于相似比的平方,即可求得△AOD与△BOC的面积比.
此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )
(2013·内江)如图,在·ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S
△DEF
:S
△ABF
=4:25,则DE:EC=( )