答案

(1)证明:连接BD.
由于ED、EB是⊙O的切线,由切线长定理,得
ED=EB,∠DEO=∠BEO,
∴OE垂直平分BD.
又∵AB是⊙O的直径,
∴AD⊥BD.
∴AD∥OE.
即OE∥AC.
又O为AB的中点,
∴OE为△ABC的中位线,
∴BE=EC,
∴EB=EC=ED.(4分)
(2)解:在△DEC中,由于ED=EC,
∴∠C=∠CDE,
∴∠DEC=180°-2∠C.
①当∠DEC>∠C时,有180°-2∠C>∠C,即0°<∠C<60°时,在线段DC上存在点F
满足条件.
在∠DEC内,以ED为一边,作∠DEF,使∠DEF=∠C,且EF交DC于点F,则点F即为所求.
这是因为:
在△DCE和△DEF中,
∠CDE=∠EDF,∠C=∠DEF,
∴△DEF∽△DCE.
∴DE
2=DF·DC.
即(
BC)
2=DF·DC
∴BC
2=4DF·DC.(6分)
②当∠DEC=∠C时,△DEC为等边三角形,即∠DEC=∠C=60°,
此时,C点即为满足条件的F点,于是,DF=DC=DE,仍有BC
2=4DE
2=4DF·DC.(7分)
③当∠DEC<∠C时,即180°-2∠C<∠C,60°<∠C<90°;所作的∠DEF>∠DEC,此时点
F在DC的延长线上,故线段DC上不存在满足条件的点F.(8分)

(1)证明:连接BD.
由于ED、EB是⊙O的切线,由切线长定理,得
ED=EB,∠DEO=∠BEO,
∴OE垂直平分BD.
又∵AB是⊙O的直径,
∴AD⊥BD.
∴AD∥OE.
即OE∥AC.
又O为AB的中点,
∴OE为△ABC的中位线,
∴BE=EC,
∴EB=EC=ED.(4分)
(2)解:在△DEC中,由于ED=EC,
∴∠C=∠CDE,
∴∠DEC=180°-2∠C.
①当∠DEC>∠C时,有180°-2∠C>∠C,即0°<∠C<60°时,在线段DC上存在点F
满足条件.
在∠DEC内,以ED为一边,作∠DEF,使∠DEF=∠C,且EF交DC于点F,则点F即为所求.
这是因为:
在△DCE和△DEF中,
∠CDE=∠EDF,∠C=∠DEF,
∴△DEF∽△DCE.
∴DE
2=DF·DC.
即(
BC)
2=DF·DC
∴BC
2=4DF·DC.(6分)
②当∠DEC=∠C时,△DEC为等边三角形,即∠DEC=∠C=60°,
此时,C点即为满足条件的F点,于是,DF=DC=DE,仍有BC
2=4DE
2=4DF·DC.(7分)
③当∠DEC<∠C时,即180°-2∠C<∠C,60°<∠C<90°;所作的∠DEF>∠DEC,此时点
F在DC的延长线上,故线段DC上不存在满足条件的点F.(8分)