试题
题目:
(2002·咸宁)已知:如图甲,△ABC内接于⊙O,AB为直径,∠CAP=∠B,则结论“AP与⊙O相切于点A”成立.
(1)若把条件“AB为直径”改为“AB为非直径的弦”,如图乙,其它条件不变,那么结论“AP与⊙O相切于点A”仍成立吗?请证明你的判断;
(2)在(1)的条件下,若D为弧AB上的一点,且弧AC=弧AD,过B、D两点的直线交PA于点E.求证:AB·DE=AC·AE.
答案
(1)解:结论仍然成立.
如图,连接AO,
∴∠D+∠CAD=90°.
∵∠CAP=∠B,∠D=∠B,
∴∠CAP+∠CAD=90°.
∴AP与⊙O相切于点A.
(2)证明:连接AD,则∠ADE=∠C,
∵弧AC和弧AD相等,
∴∠ABC=∠ABD.
∵AE是圆的切线,
∴∠EAD=∠ABD.
∴∠EAD=∠ABC.
∴△AED∽△BAC.
∴AB·DE=AC·AE.
(1)解:结论仍然成立.
如图,连接AO,
∴∠D+∠CAD=90°.
∵∠CAP=∠B,∠D=∠B,
∴∠CAP+∠CAD=90°.
∴AP与⊙O相切于点A.
(2)证明:连接AD,则∠ADE=∠C,
∵弧AC和弧AD相等,
∴∠ABC=∠ABD.
∵AE是圆的切线,
∴∠EAD=∠ABD.
∴∠EAD=∠ABC.
∴△AED∽△BAC.
∴AB·DE=AC·AE.
考点梳理
考点
分析
点评
专题
切线的判定;相似三角形的判定与性质.
(1)结论仍然成立.如图连接AO并延长交圆O与D,连接DC,可以证明∠PAC+∠CAD=90°,所以AP与⊙O相切于点A;
(2)连接AD,根据切线的性质和已知条件可以找到三角形相似的条件,然后证明△ADE和△ABC相似,再利用相似三角形的性质就可以证明题目的结论.
此题首先考查了切线的判定定理,也考查了利用切线的性质证明相似三角形,最后利用相似三角形的性质解题.
几何综合题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )