试题

题目:
(2002·盐城)已知:如图,在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上一点,点G在BE青果学院上,连接DG并延长交AE于F,若∠FGE=45°.
(1)求证:BD·BC=BG·BE;
(2)求证:AG⊥BE;
(3)若E为AC的中点,求EF:FD的值.
答案
(1)证明:∵∠BAC=90°,AB=AC
∴∠ABC=∠C=45°
∵∠BGD=∠FGE=45°
∴∠C=∠BGD
∵∠GBC=∠GBC
∴△GBD∽△CBE
BD
BE
=
BG
BC

即BD·BC=BG·BE;

(2)证明:∵BD·BC=BG·BE,∠C=45°,
∴BG=
BD·BC
BE
=
1
2
BC·BC
BE
=
1
2
(
2
AB)
2
BE
=
AB2
BE

AB
BG
=
BE
AB
,∠ABG=∠EBA
∴△ABG∽△EBA
∴∠BGA=∠BAE=90°
∴AG⊥BE;

(3)解:连接DE,
连接DE,E是AC中点,D是BC中点,青果学院
∴DE∥BA,
∵BA⊥AC,
∴DE⊥AC,设AB=2a AE=a,做CH⊥BE交BE的延长线于H,
∵∠AEG=∠CEH,∠AGE=∠CHE,AE=EC
∴△AEG≌△CEH(AAS),
∴CH=AG,
∠GAE=∠HCE
∵∠BAE为直角,
∴BE=
5
a,
∴AG=AB×
AE
BE
=
2
5
a=
2
5
5
a,
∴CH=
2
5
5
a,
∵AG⊥BE,∠FGE=45°,
∴∠AGF=45°=∠ECB,
∵∠FGE=45°,
∴∠AGE=90°,
∴AG∥CH,
∴∠GAE=∠HCE,
∵∠DFE=∠GAE+∠AGF=∠HCE+∠ECB;
∴∠DFE=∠BCH,
又∵DE⊥AC,CH⊥BE,
∴△DEF∽△BHC
∴EF:DF=CH:BC=
2
5
5
a:2
2
a=
10
10

(1)证明:∵∠BAC=90°,AB=AC
∴∠ABC=∠C=45°
∵∠BGD=∠FGE=45°
∴∠C=∠BGD
∵∠GBC=∠GBC
∴△GBD∽△CBE
BD
BE
=
BG
BC

即BD·BC=BG·BE;

(2)证明:∵BD·BC=BG·BE,∠C=45°,
∴BG=
BD·BC
BE
=
1
2
BC·BC
BE
=
1
2
(
2
AB)
2
BE
=
AB2
BE

AB
BG
=
BE
AB
,∠ABG=∠EBA
∴△ABG∽△EBA
∴∠BGA=∠BAE=90°
∴AG⊥BE;

(3)解:连接DE,
连接DE,E是AC中点,D是BC中点,青果学院
∴DE∥BA,
∵BA⊥AC,
∴DE⊥AC,设AB=2a AE=a,做CH⊥BE交BE的延长线于H,
∵∠AEG=∠CEH,∠AGE=∠CHE,AE=EC
∴△AEG≌△CEH(AAS),
∴CH=AG,
∠GAE=∠HCE
∵∠BAE为直角,
∴BE=
5
a,
∴AG=AB×
AE
BE
=
2
5
a=
2
5
5
a,
∴CH=
2
5
5
a,
∵AG⊥BE,∠FGE=45°,
∴∠AGF=45°=∠ECB,
∵∠FGE=45°,
∴∠AGE=90°,
∴AG∥CH,
∴∠GAE=∠HCE,
∵∠DFE=∠GAE+∠AGF=∠HCE+∠ECB;
∴∠DFE=∠BCH,
又∵DE⊥AC,CH⊥BE,
∴△DEF∽△BHC
∴EF:DF=CH:BC=
2
5
5
a:2
2
a=
10
10
考点梳理
相似三角形的判定与性质.
(1)根据题意,易证△GBD∽△CBE,得
BD
BE
=
BG
BC
,即BD·BC=BG·BE;
(2)可通过证明ABG∽△EBA从而求得AG⊥BE;
(3)首先连接DE,E是AC中点,D是BC中点,得出DE∥BA,因为BA⊥AC,所以 DE⊥AC设AB=2a AE=a,做CH⊥BE交BE的延长线于H,再利用△AEG≌△CEH,以及△DEF∽△BHC得出即可.
考查相似三角形的判定和性质,通常情况乘积可以转化成比例的形式.
几何综合题;压轴题.
找相似题