试题
题目:
(2001·常州)已知:如图,△ABC内接于⊙O,AE切⊙O于点A,BD∥AE交AC的延长线于点D,求证:AB
2
=AC·AD.
答案
证明:∵BD∥AE,
∴∠EAD=∠D.
∵AE切⊙O于点A,
∴∠EAD=∠ABC.
∴∠D=∠ABC.
∵∠BAD=∠BAD,
∴△ACB∽△ABD.
∴AB:AD=AC:AB.
∴AB
2
=AC·AD.
证明:∵BD∥AE,
∴∠EAD=∠D.
∵AE切⊙O于点A,
∴∠EAD=∠ABC.
∴∠D=∠ABC.
∵∠BAD=∠BAD,
∴△ACB∽△ABD.
∴AB:AD=AC:AB.
∴AB
2
=AC·AD.
考点梳理
考点
分析
点评
专题
弦切角定理;相似三角形的判定与性质.
欲证AB
2
=AC·AD,即证AB:AD=AC:AB,可以通过证明△ABC∽△ABD得出.而已知∠BAD公共,又可以根据已知条件推出∠D=∠ABC,由两角对应相等的两个三角形相似,得出△ACB∽△ABD.
乘积的形式通常可以转化为比例的形式,通过相似三角形的判定得出.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )