试题
题目:
(2003·台州)如图PA是△ABC的外接圆O的切线,A是切点,PD∥AC,且PD与AB、AC分别相交于E、D.
求证:(1)∠PAE=∠BDE;
(2)EA·EB=ED·EP.
答案
证明:如右图所示,
(1)∵AP是切线,
∴∠PAE=∠ACB,
又∵PD∥AC,
∴∠PDB=∠BDE,
∴∠PAE=∠BDE;
(2)由(1)得∠PAE=∠BDE,
又∵∠AEP=∠DEB,
∴△AEP∽△DEB,
∴AE:PE=DE:BE,
∴EA·EB=ED·EP.
证明:如右图所示,
(1)∵AP是切线,
∴∠PAE=∠ACB,
又∵PD∥AC,
∴∠PDB=∠BDE,
∴∠PAE=∠BDE;
(2)由(1)得∠PAE=∠BDE,
又∵∠AEP=∠DEB,
∴△AEP∽△DEB,
∴AE:PE=DE:BE,
∴EA·EB=ED·EP.
考点梳理
考点
分析
点评
专题
切线的性质;弦切角定理;相似三角形的判定与性质.
(1)由于AP是切线,那么∠PAE=∠ACB,而PD∥AC,于是有∠PDB=∠BDE,那么∠PAE=∠BDE;
(2)由(1)得∠PAE=∠BDE,又∠AEP=∠DEB,从而可得△AEP∽△DEB,于是有AE:PE=DE:BE,易得证.
本题考查了切线的性质、平行线的性质、弦切角定理、相似三角形的判定和性质.解题的关键是利用弦切角定理知道∠PAE=∠ACB.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )