答案
证明:(1)∵AE=BE,
∴∠BAD=∠ABE,
∵BC是直径,AD⊥BC,
∴∠ADB=∠BAC=90°,
∴∠ABD+∠BAD=∠ABC+∠C=90°,
∴∠BAD=∠C,
∴∠C=∠ABF,
∴
=;
(2)∵∠C=∠ABF,
Rt△ABH∽Rt△ACB,
∴AH:BH=AB:BC,即AH·BC=AB·BH,
∵∠EAH+∠BAD=∠AHB+∠ABH=90°,∠BAD=∠ABE,
∴∠EAH=∠AHB,
∴AE=EH=BE=
BH,
∴AH·BC=2AB·BE.
证明:(1)∵AE=BE,
∴∠BAD=∠ABE,
∵BC是直径,AD⊥BC,
∴∠ADB=∠BAC=90°,
∴∠ABD+∠BAD=∠ABC+∠C=90°,
∴∠BAD=∠C,
∴∠C=∠ABF,
∴
=;
(2)∵∠C=∠ABF,
Rt△ABH∽Rt△ACB,
∴AH:BH=AB:BC,即AH·BC=AB·BH,
∵∠EAH+∠BAD=∠AHB+∠ABH=90°,∠BAD=∠ABE,
∴∠EAH=∠AHB,
∴AE=EH=BE=
BH,
∴AH·BC=2AB·BE.