切割线定理;等腰三角形的判定;圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.
(1)根据四边形ABCD内接于⊙O,可得∠ADE=∠ABC,又弧BC所对的圆周角是∠BAC=∠BDC从而可得∠ABC=∠BAC,故△ABC为等腰三角形;
(2)由弦切角定理可得∠EAD=∠ACE,∠E是公共角,可证△AED∽△CEA,利用对应边的比相等求线段长度.
此题考查圆内接四边形的性质定理,弦切角的性质定理等知识.解答本题关键是运用定理证明角相等,从而推出相似,运用对应边的比相等,求线段的长.
几何综合题.