试题
题目:
(2004·玉溪)如图,AB是⊙O的直径,点D在AB的延长线上,且DC切⊙O于C点,∠CAD=30°,延长DC到
点E,使∠CAE=∠CAD.
(1)试探求AD与⊙O的半径有怎样的数量关系,并加以证明;
(2)求证:AC·CD=AE·OD.
答案
(1)解:AD是⊙O半径的3倍.
证明:连接OC,
∵DE是切线
∴OC⊥DE
∵OC=OA
∴∠CAO=∠OCA=30°
∴∠COD=∠CAO+∠OCA=60°
∴∠D=30°
∴OD=2OC
∴AD=3OC;
(2)证明:∵∠CAE=∠CAD=30°
∴∠EAD=60°=∠COD
∴OC∥AE
∴∠E=∠OCD=90°
又∠EAC=∠D=30°
∴△EAC∽△CDO
∴AE:CD=AC:OD
∴AC·CD=AE·OD.
(1)解:AD是⊙O半径的3倍.
证明:连接OC,
∵DE是切线
∴OC⊥DE
∵OC=OA
∴∠CAO=∠OCA=30°
∴∠COD=∠CAO+∠OCA=60°
∴∠D=30°
∴OD=2OC
∴AD=3OC;
(2)证明:∵∠CAE=∠CAD=30°
∴∠EAD=60°=∠COD
∴OC∥AE
∴∠E=∠OCD=90°
又∠EAC=∠D=30°
∴△EAC∽△CDO
∴AE:CD=AC:OD
∴AC·CD=AE·OD.
考点梳理
考点
分析
点评
专题
切线的性质;相似三角形的判定与性质.
(1)要探求AD与⊙O半径的数量关系,因为AD=OD+⊙O的半径,即探求OD与⊙O半径的数量关系,为此连接OC,得直角△OCD,根据30°角所对的直角边等于斜边的一半求出答案;
(2)欲证AC·CD=AE·OD,即证AE:CD=AC:OD,可以通过证明△EAC∽△CDO求出.
本题主要考查相似三角形的判定和切线的性质.
综合题;存在型.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )