试题
题目:
(2006·达州)如图,在平行四边形ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=5,AD=3,∠BAE=30°,求BF的长.
答案
(1)证明:∵四边形ABCD为平行四边形,
∴AD∥BC,AB∥DC.
∴∠D+∠C=180°,∠BAE=∠AED.
∵∠AFB+∠BFE=180°,∠C=∠BFE,
∴∠AFB=∠D.
∴△ABF∽△EAD.
(2)解:∵BE⊥CD,AB∥DC,
∴EB⊥AB.
∴△ABE为Rt△.
∵AB=5,∠BAE=30°,
∴AE=
10
3
3
.
∵△ABF∽△EAD,
∴
AB
AE
=
BF
AD
.
∴BF=
3
3
2
.
(1)证明:∵四边形ABCD为平行四边形,
∴AD∥BC,AB∥DC.
∴∠D+∠C=180°,∠BAE=∠AED.
∵∠AFB+∠BFE=180°,∠C=∠BFE,
∴∠AFB=∠D.
∴△ABF∽△EAD.
(2)解:∵BE⊥CD,AB∥DC,
∴EB⊥AB.
∴△ABE为Rt△.
∵AB=5,∠BAE=30°,
∴AE=
10
3
3
.
∵△ABF∽△EAD,
∴
AB
AE
=
BF
AD
.
∴BF=
3
3
2
.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;平行线的性质;平行四边形的性质.
根据平行四边形的性质及相似三角形的判定方法得到△ABF∽△EAD,再根据相似三角形的边对应成比例即可求得BF的长.
本题考查平行线的性质,相似三角形的判定和性质的综合运用.
几何综合题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )