试题
题目:
(2013·塘沽区二模)如图(1),AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点C,AD⊥CD,垂足为D.
(Ⅰ)求证:△ADC∽△ACB;
(Ⅱ)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C,G两点,若题目中的其他条件不变,且AG=4,BG=3,求
AD
AC
的值.
答案
(I)证明:连接OC,
∵OC=OB,
∴∠OBC=∠OCB,
∵AB是⊙O直径,DC切⊙O于C,AD⊥DC,
∴∠ADC=∠DCO=∠ACB=90°,
∴∠DCA+∠ACO=∠ACO+∠OCB=90°,
∴∠DCA=∠OCB=∠OBC,
∵∠ADC=∠ACB,∠DCA=∠OBC,
∴△ADC∽△ACB.
(II)解:∵AB是⊙O直径,
∴∠AGB=90°,
∵AG=4,BG=3,由勾股定理得:AB=
4
2
+
3
2
=5,
∵四边形ACGB是⊙O的内接四边形,
∴∠B+∠ACG=180°,
∵∠ACD+∠ACG=180°,
∴∠B=∠DCA,
∵AD⊥DC,
∴∠ADC=∠AGB,
∴△ADC∽△AGB,
∴
AD
AG
=
AC
AB
,
∴
AD
AC
=
AG
AB
=
4
5
.
(I)证明:连接OC,
∵OC=OB,
∴∠OBC=∠OCB,
∵AB是⊙O直径,DC切⊙O于C,AD⊥DC,
∴∠ADC=∠DCO=∠ACB=90°,
∴∠DCA+∠ACO=∠ACO+∠OCB=90°,
∴∠DCA=∠OCB=∠OBC,
∵∠ADC=∠ACB,∠DCA=∠OBC,
∴△ADC∽△ACB.
(II)解:∵AB是⊙O直径,
∴∠AGB=90°,
∵AG=4,BG=3,由勾股定理得:AB=
4
2
+
3
2
=5,
∵四边形ACGB是⊙O的内接四边形,
∴∠B+∠ACG=180°,
∵∠ACD+∠ACG=180°,
∴∠B=∠DCA,
∵AD⊥DC,
∴∠ADC=∠AGB,
∴△ADC∽△AGB,
∴
AD
AG
=
AC
AB
,
∴
AD
AC
=
AG
AB
=
4
5
.
考点梳理
考点
分析
点评
切线的性质;相似三角形的判定与性质.
(I)连接OC,求出∠ADC=∠ACB,∠DCA=∠B,根据相似三角形的判定推出即可;
(II)根据勾股定理求出AB,求出∠ACG+∠B=180°,求出∠DCA=∠B,求出∠ADC=∠AGB,证△ADC∽△AGB,得出比例式,代入求出即可.
本题考查了圆内接四边形,切线的性质,圆周角定理,相似三角形的性质和判定,等腰三角形的性质的应用,关键是推出△ADC∽△ACB或△ADC∽△AGB.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )