试题
题目:
(2013·西城区一模)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.
(1)求证:EF与⊙O相切;
(2)若AE=6,sin∠CFD=
3
5
,求EB的长.
答案
(1)证明:如图,连接OD.
∵OC=OD,
∴∠OCD=∠ODC.
∵AB=AC,
∴∠ACB=∠∠B
∴∠ODC=∠B
∴OD∥AB
∴∠ODF=∠AEF
∵EF⊥AB
∴∠ODF=∠AEF=90°
∴OD⊥EF
∵OD是⊙O的半径,
∴EF与⊙O相切;
(2)解:由(1)知,OD∥AB,OD⊥EF.
在Rt△AEF中,sin∠CFD=
AE
AF
=
3
5
,AE=6,
则AF=10.
∵OD∥AB,
∴
OF
AF
=
OD
AE
.
设⊙O的半径为r,
∴
10-r
10
=
r
6
,
解得,r=
15
4
.
∴AB=AC=2r=
15
2
,
∴EB=AB-AE=
15
2
-6=
3
2
.
(1)证明:如图,连接OD.
∵OC=OD,
∴∠OCD=∠ODC.
∵AB=AC,
∴∠ACB=∠∠B
∴∠ODC=∠B
∴OD∥AB
∴∠ODF=∠AEF
∵EF⊥AB
∴∠ODF=∠AEF=90°
∴OD⊥EF
∵OD是⊙O的半径,
∴EF与⊙O相切;
(2)解:由(1)知,OD∥AB,OD⊥EF.
在Rt△AEF中,sin∠CFD=
AE
AF
=
3
5
,AE=6,
则AF=10.
∵OD∥AB,
∴
OF
AF
=
OD
AE
.
设⊙O的半径为r,
∴
10-r
10
=
r
6
,
解得,r=
15
4
.
∴AB=AC=2r=
15
2
,
∴EB=AB-AE=
15
2
-6=
3
2
.
考点梳理
考点
分析
点评
切线的判定;相似三角形的判定与性质.
(1)如图,欲证明EF与⊙O相切,只需证得OD⊥EF.
(2)通过解直角△AEF可以求得AF=10.设⊙O的半径为r,由平行线分线段成比例得到
OF
AF
=
OD
AE
,即
10-r
10
=
r
6
,则易求AB=AC=2r=
15
2
,所以EB=AB-AE=
15
2
-6=
3
2
.
本题考查了切线的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )