试题

题目:
青果学院(2013·闸北区二模)已知:如图,△ABC中,点D、E、F分别在边BC、CA、AB上,
AF
FB
=
BD
DC
=
AE
EC

(1)若BE平分∠ABC,试说明四边形DBFE的形状,并加以证明;
(2)若点G为△ABC的重心,且△BCG与△EFG的面积之和为20,求△BCG的面积.
答案
解:(1)四边形DBFE是菱形.…(1分)
证明:∵△ABC中,
AF
FB
=
BD
DC
=
AE
EC

∴FE∥BC,DE∥AB,…(2分)
∴四边形DBFE是平行四边形,…(1分)
又∵BE平分∠ABC,
∴∠FBE=∠DBE,
∵FE∥BC,
∴∠FEB=∠DBE,…(1分)
∴∠FBE=∠FEB,…(1分)
∴BF=EF,…(1分)
∴四边形DBFE是菱形;

(2)∵FE∥BC,
∴△EFG∽△BCG,…(1分)
S△EFG
S△BCG
=(
FG
GC
2,…(1分)
∵点G为△ABC的重心,
FG
GC
=
1
2
,…(1分)
S△EFG
S△BCG
=(
1
2
2=
1
4

∴S△BCG=4S△EFG.…(1分)
∵S△EFG+S△BCG=20,
∴S△BCG=16.…(1分)
解:(1)四边形DBFE是菱形.…(1分)
证明:∵△ABC中,
AF
FB
=
BD
DC
=
AE
EC

∴FE∥BC,DE∥AB,…(2分)
∴四边形DBFE是平行四边形,…(1分)
又∵BE平分∠ABC,
∴∠FBE=∠DBE,
∵FE∥BC,
∴∠FEB=∠DBE,…(1分)
∴∠FBE=∠FEB,…(1分)
∴BF=EF,…(1分)
∴四边形DBFE是菱形;

(2)∵FE∥BC,
∴△EFG∽△BCG,…(1分)
S△EFG
S△BCG
=(
FG
GC
2,…(1分)
∵点G为△ABC的重心,
FG
GC
=
1
2
,…(1分)
S△EFG
S△BCG
=(
1
2
2=
1
4

∴S△BCG=4S△EFG.…(1分)
∵S△EFG+S△BCG=20,
∴S△BCG=16.…(1分)
考点梳理
相似三角形的判定与性质;三角形的重心;菱形的判定.
(1)由△ABC中,
AF
FB
=
BD
DC
=
AE
EC
,可得FE∥BC,DE∥AB,即可判定四边形DBFE是平行四边形,又由BE平分∠ABC,可证得BF=EF,即可判定四边形DBFE是菱形;
(2)由FE∥BC,可得△EFG∽△BCG,又由相似三角形面积的比等于相似比的平方,可得
S△EFG
S△BCG
=(
FG
GC
2,然后由点G为△ABC的重心,可得FG:GC=1:2,可得S△BCG=4S△EFG.又由△BCG与△EFG的面积之和为20,即可求得答案.
此题考查了相似三角形的判定与性质、三角形重心的性质以及菱形的判定.此题难度适中,注意掌握数形结合思想的应用.
找相似题