试题

题目:
青果学院(2013·浙江一模)如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.
(1)求证:AM是⊙O的切线;
(2)当BC=6,OB:OA=1:2 时,求
FM
,AM,AF围成的阴影部分面积.
答案
青果学院解:(1)连结OM,
∵AB=AC,E是BC中点,
∴BC⊥AE,
∵OB=OM,
∴∠OMB=∠MBC,
∵∠FBM=∠CBM,
∴∠OMB=∠CBM,
∴OM∥BC,
∴OM⊥AE,
∴AM是⊙O的切线;

(2)∵E是BC中点,
∴BE=
1
2
BC=3,
∵OB:OA=1:2,OB=OM,
∴OM:OA=1:2,
∵OM⊥AE,
∴∠MAB=30°,∠MOA=60°,OA:BA=1:3,
∵OM∥BC,
∴△AOM∽△ABE,
OM
BE
=
OA
AB
=
1
3

∴OM=2,
∴AM=
OA2-OM2
=2
3

∴S阴影=
1
2
×2
3
×2-
60π×22
360
=2
3
-
2
3
π.
青果学院解:(1)连结OM,
∵AB=AC,E是BC中点,
∴BC⊥AE,
∵OB=OM,
∴∠OMB=∠MBC,
∵∠FBM=∠CBM,
∴∠OMB=∠CBM,
∴OM∥BC,
∴OM⊥AE,
∴AM是⊙O的切线;

(2)∵E是BC中点,
∴BE=
1
2
BC=3,
∵OB:OA=1:2,OB=OM,
∴OM:OA=1:2,
∵OM⊥AE,
∴∠MAB=30°,∠MOA=60°,OA:BA=1:3,
∵OM∥BC,
∴△AOM∽△ABE,
OM
BE
=
OA
AB
=
1
3

∴OM=2,
∴AM=
OA2-OM2
=2
3

∴S阴影=
1
2
×2
3
×2-
60π×22
360
=2
3
-
2
3
π.
考点梳理
切线的判定;勾股定理;扇形面积的计算;相似三角形的判定与性质.
(1)连接OM,由AB=AC,且E为BC中点,利用三线合一得到AE垂直于BC,再由OB=OM,利用等边对等角得到一对角相等,由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OM与BC平行,可得出OM垂直于AE,即可得证;
(2)由E为BC中点,求出BE的长,再由OB与OA的比值,以及OB=OM,得到OM与OA的比值,由OM垂直于AE,利用直角三角形中一直角边等于斜边的一半,得到此直角边所对的角为30度得到∠MAB=30°,∠MOA=60°,阴影部分的面积=三角形AOM面积-扇形MOF面积,求出即可.
此题考查了切线的判定,涉及的知识有:圆周角定理,弧,弦及圆心角之间的关系,平行线的性质,扇形面积求法,以及勾股定理,熟练掌握切线的判定方法是解本题的关键.
计算题.
找相似题