试题
题目:
(1997·内江)如图,已知AB、CD是⊙O的两条平行弦,过A点的⊙O的切线AE和DC的延长线交于E点,P为弧
CD
上一点,弦AP、BP与CD分别交于点M、N.
求证:CM:EM=NM:DM.
答案
证明:∵AE是⊙O的切线,
∴∠EAP=∠ABP.
∵AB∥CD,
∴∠ABP=∠ENP,∠AME=∠NMP.
∴△AEM∽△PNM.
∴AM·PM=MN·EN.
∵AM·PM=CM·DM,
∴MN·EM=CM·DM.
即CM:EM=NM:DM.
证明:∵AE是⊙O的切线,
∴∠EAP=∠ABP.
∵AB∥CD,
∴∠ABP=∠ENP,∠AME=∠NMP.
∴△AEM∽△PNM.
∴AM·PM=MN·EN.
∵AM·PM=CM·DM,
∴MN·EM=CM·DM.
即CM:EM=NM:DM.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;平行线的性质;相交弦定理;弦切角定理.
由弦切角定理可知∠EAP=∠ABP,由AB∥CD,得∠ABP=∠ENP,因为∠AME=∠NMP,故△AEM∽△PNM,依据相交弦定理解答.
此题考查的是相交弦定理,平行线的性质,相似三角形的性质及判定定理,弦切角定理的综合运用能力.
证明题;压轴题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )