试题
题目:
(2013·静安区二模)已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,∠AFD=∠BEC.
求证:(1)AF=CE;
(2)BF
2
=EF·AF.
答案
(1)证明:∵DA=DB,
∴∠FBA=∠EAC,
∵∠AFD=∠BEC,
∴180°-∠AFD=180°-∠BEC,
即∠BFA=∠AEC.
∵在△BFA和△AEC中
∠AFB=∠AEC
∠FBA=∠EAC
AB=AC
,
∴△BFA≌△AEC(AAS).
∴AF=CE.
(2)解:∵△BFA≌△AEC,
∴BF=AE.
∵∠EAF=∠ECA,∠FEA=∠AEC,
∴△EFA∽△EAC.
∴
EA
EC
=
EF
EA
.
∴EA
2
=EF·CE.
∵EA=BF,CE=AF,
∴BF
2
=EF·AF.
(1)证明:∵DA=DB,
∴∠FBA=∠EAC,
∵∠AFD=∠BEC,
∴180°-∠AFD=180°-∠BEC,
即∠BFA=∠AEC.
∵在△BFA和△AEC中
∠AFB=∠AEC
∠FBA=∠EAC
AB=AC
,
∴△BFA≌△AEC(AAS).
∴AF=CE.
(2)解:∵△BFA≌△AEC,
∴BF=AE.
∵∠EAF=∠ECA,∠FEA=∠AEC,
∴△EFA∽△EAC.
∴
EA
EC
=
EF
EA
.
∴EA
2
=EF·CE.
∵EA=BF,CE=AF,
∴BF
2
=EF·AF.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定与性质;等腰三角形的性质.
(1)根据全等三角形的判定方法得出△BFA≌△AEC(AAS),即可得出答案;
(2)根据∠EAF=∠ECA,∠FEA=∠AEC,得出△EFA∽△EAC,进而求出
EA
EC
=
EF
EA
,即可得出BF
2
=EF·AF.
此题主要考查了相似三角形的判定与性质以及全等三角形的判定,根据已知得出∠BFA=∠AEC是解题关键.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )