切线的判定;相似三角形的判定与性质.
(1)连接OD,由DE与DB垂直,得到一对角互余,再由BD为角平分线,以及一对直角相等,得到三角形EDB与三角形DBC相似,由相似三角形的对应角相等得到一对角相等,再由OE=OD,利用等边对等角得到一对角相等,等量代换得到OD垂直于AC,即可得证;
(2)BD2=2BO·BC,理由为:由三角形EBD与三角形DBC相似,得比例式,将BE换为2BO即可得证;
(3)在直角三角形DBC中,利用勾股定理求出BD的长,根据(2)的关系式求出BO的长,即为OD的长,由OD与BC都与AC垂直,得到OD与BC平行,由平行得比例,即可求出AD的长.
此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.
计算题.