试题

题目:
青果学院(2006·余姚市)如图,AB为⊙O直径,过弦AC的点C作CF⊥AB于点D,交AE所在直线于点F.
(1)求证:AC2=AE·AF;
(2)当弦AC绕点A沿顺时针旋转(C、F不与A、B、E重合)时,请画出满足题意的其它的全部图形;
(3)猜想每个图形是否还有(1)中的结论,并就其中的一个图形证明你的猜想.
答案
证明:(1)连接CE、延长CF与圆交于H点,青果学院
∵AB为⊙O直径,CF⊥AB,
AH
=  
AC

∴∠ACH=∠E,
∴△ACF∽△AEC,
∴AC2=AE·AF;

(2)图一:
青果学院
图二:
青果学院

(3)每个图形都有(1)中的结论如图一,
解:连接CE,
∵AB为⊙O直径,CF⊥AB,
AH
=
AC

∴∠ACF=∠AEC,
∴△ACF∽△AEC,
∴AC2=AE·AF.
证明:(1)连接CE、延长CF与圆交于H点,青果学院
∵AB为⊙O直径,CF⊥AB,
AH
=  
AC

∴∠ACH=∠E,
∴△ACF∽△AEC,
∴AC2=AE·AF;

(2)图一:
青果学院
图二:
青果学院

(3)每个图形都有(1)中的结论如图一,
解:连接CE,
∵AB为⊙O直径,CF⊥AB,
AH
=
AC

∴∠ACF=∠AEC,
∴△ACF∽△AEC,
∴AC2=AE·AF.
考点梳理
相似三角形的判定与性质;垂径定理;圆周角定理.
(1)连接CE、延长CF与圆交于H点,由题意可知
AH
=  
AC
,可得∠ACH=∠E,推出△ACF∽△AEC,即可推出结论;
(2)根据题意画出图形;
(3)每个图形都有(1)中的结论,如图一,根据题意可知
AH
=
AC
,可得∠ACF=∠AEC,推出△ACF≌△AEC,即可得结论.
本题主要考查了垂径定理、相似三角形的判定和性质、圆周角定理,解题关键在于根据题意画出图形,作好辅助线、找到相似三角形.
找相似题