切线的性质;勾股定理;三角形中位线定理;圆周角定理;相似三角形的判定与性质.
(1)连接OD,由切线的性质知,OD⊥DE;△ABC中,O、D分别为AB、BC的中点,即OD是△ABC的中位线,因此OD∥AC,由此可得DE⊥AC;
(2)连接AD,由圆周角定理知AD⊥BC,即AD是BC的垂直平分线;因此△ABC是等腰三角形,∠B=∠C,易证得Rt△CED∽Rt△BDA,可得DE:CD=AD:AB;可在Rt△ABD中,用勾股定理求得AD的长,进而可根据上面的比例关系求出DE的长.
本题考查的知识点有:切线的性质、三角形中位线的性质、圆周角定理、相似三角形的判定和性质、勾股定理等.
综合题;动点型.