翻折变换(折叠问题);平行线的性质;三角形中位线定理;平行四边形的性质;相似三角形的判定与性质.
(1)过C点作CH∥BD,交AB的延长线于点H;连接AC,交EF于点K,则AK=CK.
通过证明四边形CDBH是平行四边形,△ACH是等腰三角形,根据等腰三角形的性质,底边上的高是底边上的中线得到EK是△AHC的中位线.EK∥CH.可得EF∥BD.
(2)由AB=7,CD=3,得AH=10.由折叠的性质知AE=CE,∴AE=CE=EH=5.在等腰直角三角形CHE中,由勾股定理得,CH=5
=BD.由于△AFE∽△ADB.即
=.从而求得EF的值.
本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、平行线的性质,三角形中位线的性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质求解.
综合题;压轴题.