题目:

(2007·淄博)已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC
2=AB·AD.
(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;
(3)试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形.(标明各角的度数)
答案

解:(1)在△ABC中,AC=BC,
∴∠B=∠A=36°,∠ACB=108°
在△ABC与△CAD中,∠A=∠B=36°
∵AC
2=AB·AD
∴
==∴△ABC∽△CAD
∴∠ACD=∠A=36°
∴∠CDB=72°,∠DCB=108°-36°=72°
∴△ADC和△BDC都是等腰三角形
(2)设AC=x,则x
2=1×(1-x)
即x
2+x-1=0,
∴x=
,
∴AC=
;
(3)说明:按照画出的梯形中,有4个,6个和8个等腰三角形三种情况分别给分
①有4个等腰三角形得(1);
②有6个等腰三角形,得(2);
③有8个等腰三角形,得(3).

解:(1)在△ABC中,AC=BC,
∴∠B=∠A=36°,∠ACB=108°
在△ABC与△CAD中,∠A=∠B=36°
∵AC
2=AB·AD
∴
==∴△ABC∽△CAD
∴∠ACD=∠A=36°
∴∠CDB=72°,∠DCB=108°-36°=72°
∴△ADC和△BDC都是等腰三角形
(2)设AC=x,则x
2=1×(1-x)
即x
2+x-1=0,
∴x=
,
∴AC=
;
(3)说明:按照画出的梯形中,有4个,6个和8个等腰三角形三种情况分别给分
①有4个等腰三角形得(1);
②有6个等腰三角形,得(2);
③有8个等腰三角形,得(3).