试题

题目:
(2013·鹤壁二模)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC于G,BH⊥DC于H,CH=DH,点E在青果学院AB上,点F在BC上,并且EF∥DC.
(1)若AD=3,CG=2,求CD;
(2)若CF=AD+BF,求证:EF=
1
2
CD.
答案
青果学院(1)解:连BD,如图,
∵在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC,
∴四边形ABGD为矩形,
∴AD=BG=3,AB=DG,
又∵BH⊥DC,CH=DH,
∴△BDC为等腰三角形,
∴BD=BG+GC=3+2=5,
在Rt△ABD中,AB=
BD2-AD2
=
52-32
=4,
∴DG=4,
在Rt△DGC中,
∴DC=
DG2+GC2
=
42+22
=2
5


(2)证明:∵CF=AD+BF,
∴CF=BG+BF,
∴FG+GC=BF+FG+BF,即GC=2BF,
∵EF∥DC,
∴∠BFE=∠GCD,
∴Rt△BEF∽Rt△GDC,
∴EF:DC=BF:GC=1:2,
∴EF=
1
2
DC.
青果学院(1)解:连BD,如图,
∵在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC,
∴四边形ABGD为矩形,
∴AD=BG=3,AB=DG,
又∵BH⊥DC,CH=DH,
∴△BDC为等腰三角形,
∴BD=BG+GC=3+2=5,
在Rt△ABD中,AB=
BD2-AD2
=
52-32
=4,
∴DG=4,
在Rt△DGC中,
∴DC=
DG2+GC2
=
42+22
=2
5


(2)证明:∵CF=AD+BF,
∴CF=BG+BF,
∴FG+GC=BF+FG+BF,即GC=2BF,
∵EF∥DC,
∴∠BFE=∠GCD,
∴Rt△BEF∽Rt△GDC,
∴EF:DC=BF:GC=1:2,
∴EF=
1
2
DC.
考点梳理
直角梯形;勾股定理;矩形的性质;相似三角形的判定与性质.
(1)由AD∥BC,∠ABC=90°,DG⊥BC得到四边形ABGD为矩形,利用矩形的性质有AD=BG=3,AB=DG,而BH⊥DC,CH=DH,根据等腰三角形的判定得到△BDC为等腰三角形,即有BD=BG+GC=3+2=5,先在Rt△ABD中求出AB,然后在Rt△DGC中求出DC;
(2)由CF=AD+BF,AD=BG,经过线段代换易得GC=2BF,再由EF∥DC得到∠BFE=∠GCD,根据三角形相似的判定易得Rt△BEF∽Rt△GDC,利用相似比即可得到结论.
本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角.也考查了矩形的性质、勾股定理、等腰三角形的判定以及相似三角形的判定与性质.
几何综合题;压轴题.
找相似题