试题

题目:
青果学院(2008·怀化)如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.
求证:(1)AE=CG;(2)AN·DN=CN·MN.
答案
证明:(1)∵四边形ABCD和四边形DEFG都是正方形,
∴AD=CD,DE=DG,∠ADC=∠EDG=90°,
∵∠ADE=90°+∠ADG,∠CDG=90°+∠ADG,
∴∠ADE=∠CDG,
在△ADE和△CDG中
AD=CD
∠ADE=∠CDG
DE=DG

∴△ADE≌△CDG(SAS),
∴AE=CG.

(2)由(1)得△ADE≌△CDG,
则∠DAE=∠DCG,
又∵∠ANM=∠CND,
∴△AMN∽△CDN,
AN
CN
=
MN
DN

即AN·DN=CN·MN.
证明:(1)∵四边形ABCD和四边形DEFG都是正方形,
∴AD=CD,DE=DG,∠ADC=∠EDG=90°,
∵∠ADE=90°+∠ADG,∠CDG=90°+∠ADG,
∴∠ADE=∠CDG,
在△ADE和△CDG中
AD=CD
∠ADE=∠CDG
DE=DG

∴△ADE≌△CDG(SAS),
∴AE=CG.

(2)由(1)得△ADE≌△CDG,
则∠DAE=∠DCG,
又∵∠ANM=∠CND,
∴△AMN∽△CDN,
AN
CN
=
MN
DN

即AN·DN=CN·MN.
考点梳理
相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.
(1)要证明AE=CG,只要证得三角形ADE和三角形CDG全等即可,根据题中的已知条件我们不难得出,AD=CD,GC=AE,∠ADE和∠GDC,又同为90°+∠ADC,那么就构成了全等三角形的判定中SAS的条件.
(2)本题可通过证明三角形AMN和三角形CDN相似来证得.
求某两条线段相等,可通过证明它们所在的三角形全等来实现.要证明某些线段成比例,可通过证明这些相关联的线段所在的三角形相似来得出所求的条件.
证明题.
找相似题