试题

题目:
青果学院(2008·扬州)如图,在△ABD和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?
答案
解:(1)BC、DE的数量关系是BC=DE.
理由如下:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,
又∵AB=AD,AC=AE,
∴△ABC≌△ADE.(SAS)
∴BC=DE.

(2)线段FD是线段FG和FB的比例中项.
理由如下:∵△ABC≌△ADE,∴∠ABC=∠ADE.
∵∠ABC=∠CBD,∴∠ADE=∠CBD,
又∵∠BFD=∠DFG,
∴△BFD∽△DFG.
BF
DF
=
DF
GF
∴FD2=FG·FB.
即线段FD是线段FG和FB的比例中项.
解:(1)BC、DE的数量关系是BC=DE.
理由如下:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,
又∵AB=AD,AC=AE,
∴△ABC≌△ADE.(SAS)
∴BC=DE.

(2)线段FD是线段FG和FB的比例中项.
理由如下:∵△ABC≌△ADE,∴∠ABC=∠ADE.
∵∠ABC=∠CBD,∴∠ADE=∠CBD,
又∵∠BFD=∠DFG,
∴△BFD∽△DFG.
BF
DF
=
DF
GF
∴FD2=FG·FB.
即线段FD是线段FG和FB的比例中项.
考点梳理
相似三角形的判定与性质;全等三角形的判定;等腰三角形的性质.
(1)利用SAS证明△ABC≌△ADE,得BC=DE.
(2)根据(1)里的全等关系,可证出△BFD∽△DFG,所以
BF
DF
=
DF
GF
,即FD2=FG·FB.
本题利用了全等三角形的判定和性质,以及相似三角形的判定和性质.
几何综合题.
找相似题