试题
题目:
(2008·自贡)如图,A、B为⊙O上的点,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D,若AC为∠BAD的平分线.
求证:(1)AB为⊙O的直径;(2)AC
2
=AB·AD.
答案
证明:(1)连接BC,
AC平分∠BAD,
∴∠DAC=∠CAB.
又CD切⊙O于点C,
∴∠ACD=∠B(弦切角定理).
∵AD⊥CD,
∴∠ACD+∠DAC=90°.
即∠B+∠CAB=90°,∴∠BCA=90°.
∴AB是⊙O的直径(90°圆周角所对弦是直径).
(2)∵∠ACD=∠B,∠DAC=∠CAB,
∴△ACD∽△ABC.
∴
AB
AC
=
AC
AD
.
∴AC
2
=AB·AD.
证明:(1)连接BC,
AC平分∠BAD,
∴∠DAC=∠CAB.
又CD切⊙O于点C,
∴∠ACD=∠B(弦切角定理).
∵AD⊥CD,
∴∠ACD+∠DAC=90°.
即∠B+∠CAB=90°,∴∠BCA=90°.
∴AB是⊙O的直径(90°圆周角所对弦是直径).
(2)∵∠ACD=∠B,∠DAC=∠CAB,
∴△ACD∽△ABC.
∴
AB
AC
=
AC
AD
.
∴AC
2
=AB·AD.
考点梳理
考点
分析
点评
专题
圆周角定理;角平分线的性质;弦切角定理;相似三角形的判定与性质.
(1)要证明AB是直径,只需连接BC,证明∠ACB=90°,根据弦切角定理和角平分线的定义发现三角形ABC和三角形ACD中的两个角对应相等,即可得到第三个角对应相等;
(2)根据(1)中的过程,显然发现两个三角形相似,根据相似三角形的对应边的比相等证明结论.
熟练运用弦切角定理和相似三角形的性质和判定.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )