答案

解:在Rt△ADE中,AE=
==5.(1分)
①当0<t≤3时,如图1.(2分)
过点Q作QM⊥AB于M,连接QP.
∵AB∥CD,∴∠QAM=∠DEA,
又∵∠AMQ=∠D=90°,∴△AQM∽△EAD.
∴
=,∴
QM==t.(3分)
S=
AP·QM=
×2t×
t=
t
2.(4分)
②当3<t≤
时,如图2.(5分)

在Rt△ADE中,AE=
==5过点Q作QM⊥AB于M,QN⊥BC于N,连接QB、QP.
∵AB∥CD,∴∠QAM=∠DEA,
又∵∠AMQ=∠ADE=90°,∴△AQM∽△EAD.
∴
=,
=,
∴
QM==t.(6分)
AM=
=
t,∴QN=BM=6-AM=6-
t.(7分)
∴S
△QAB=
AB·QM=
×6×
t=
t
S
△QBP=
BP·QN=
(2t-6)(6-
t)=-
t
2+
t-18
∴S=S
△QAB+S
△QBP=
t+(-
t
2+
t-18)=-
t
2+
t-18(8分)
③当
<t≤5时.

方法1:过点Q作QH⊥CD于H,连接QP.如图3.
由题意得QH∥AD,∴△EHQ∽△EDA,∴
=∴QH=
=
(5-t)(10分)
∴S
梯ABCE=
(EC+AB)·BC=
(2+6)×3=12
S
△EQP=
EP·QH=
(11-2t)×
(5-t)=
t
2-
t+
∴S=S
梯ABCE-S
△EQP=12-
t
2+
t-
=-
t
2+
t-
.(11分)

解:在Rt△ADE中,AE=
==5.(1分)
①当0<t≤3时,如图1.(2分)
过点Q作QM⊥AB于M,连接QP.
∵AB∥CD,∴∠QAM=∠DEA,
又∵∠AMQ=∠D=90°,∴△AQM∽△EAD.
∴
=,∴
QM==t.(3分)
S=
AP·QM=
×2t×
t=
t
2.(4分)
②当3<t≤
时,如图2.(5分)

在Rt△ADE中,AE=
==5过点Q作QM⊥AB于M,QN⊥BC于N,连接QB、QP.
∵AB∥CD,∴∠QAM=∠DEA,
又∵∠AMQ=∠ADE=90°,∴△AQM∽△EAD.
∴
=,
=,
∴
QM==t.(6分)
AM=
=
t,∴QN=BM=6-AM=6-
t.(7分)
∴S
△QAB=
AB·QM=
×6×
t=
t
S
△QBP=
BP·QN=
(2t-6)(6-
t)=-
t
2+
t-18
∴S=S
△QAB+S
△QBP=
t+(-
t
2+
t-18)=-
t
2+
t-18(8分)
③当
<t≤5时.

方法1:过点Q作QH⊥CD于H,连接QP.如图3.
由题意得QH∥AD,∴△EHQ∽△EDA,∴
=∴QH=
=
(5-t)(10分)
∴S
梯ABCE=
(EC+AB)·BC=
(2+6)×3=12
S
△EQP=
EP·QH=
(11-2t)×
(5-t)=
t
2-
t+
∴S=S
梯ABCE-S
△EQP=12-
t
2+
t-
=-
t
2+
t-
.(11分)