试题

题目:
青果学院(2009·荆门)如图,半径为2
5
的⊙O内有互相垂直的两条弦AB、CD相交于P点.
(1)求证:PA·PB=PC·PD;
(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF⊥AD;
(3)若AB=8,CD=6,求OP的长.
答案
(1)证明:∵∠A、∠C所对的圆弧相同,
∴∠A=∠C,
∴Rt△APD∽Rt△CPB,
AP
CP
=
PD
PB

∴PA·PB=PC·PD;(3分)

(2)证明:∵F为BC的中点,△BPC为直角三角形,
∴FP=FC,∴∠C=∠CPF.
又∠C=∠A,∠DPE=∠CPF,
∴∠A=∠DPE.
∵∠A+∠D=90°,
∴∠DPE+∠D=90°,
∴EF⊥AD;(7分)

(3)解:作OM⊥AB于M,ON⊥CD于N,连接PO,青果学院
∴OM2=(2
5
2-42=4,ON2=(2
5
2-32=11,
易证四边形MONP是矩形,
∴OP=
OM2+ON2
=
15
.      (7分)
(1)证明:∵∠A、∠C所对的圆弧相同,
∴∠A=∠C,
∴Rt△APD∽Rt△CPB,
AP
CP
=
PD
PB

∴PA·PB=PC·PD;(3分)

(2)证明:∵F为BC的中点,△BPC为直角三角形,
∴FP=FC,∴∠C=∠CPF.
又∠C=∠A,∠DPE=∠CPF,
∴∠A=∠DPE.
∵∠A+∠D=90°,
∴∠DPE+∠D=90°,
∴EF⊥AD;(7分)

(3)解:作OM⊥AB于M,ON⊥CD于N,连接PO,青果学院
∴OM2=(2
5
2-42=4,ON2=(2
5
2-32=11,
易证四边形MONP是矩形,
∴OP=
OM2+ON2
=
15
.      (7分)
考点梳理
垂径定理;勾股定理;相似三角形的判定与性质.
(1)求证PA·PB=PC·PD可以转化为证明Rt△APD∽Rt△CPB;
(2)求证EF⊥AD,可以转化为证明∠DPE+∠D=90°,从而转化为证明∠A=∠DPE;
(3)作OM⊥AB于M,ON⊥CD于N,OP是矩形MONP的对角线,根据勾股定理就可以求出OP的长.
证明线段的积相等的问题可以转化为证明三角形相似的问题.并且本题还考查了垂径定理,以及勾股定理.
几何综合题;压轴题.
找相似题