答案

解:(1)BF为⊙O的切线.
证明:连接AE.
∵AB为⊙O的直径,
∴∠AEB=90°(直径所对的圆周角是直角),
∴∠BAE+∠ABE=90°(直角三角形的两个锐角互余);
又∵AB=AC,AE⊥BC,
∴AE平分∠BAC,即∠BAE=∠CAE;
∵∠CAB=2∠CBF,
∴∠BAE=∠CBF,
∴∠BAE+∠ABE=∠ABE+∠CBF=90°,即AB⊥BF,
∵OB是半径,
∴BF为⊙O的切线;
(2)过点C作CG⊥BF于点G.
在Rt△ABF中,AB=6,BF=8,
∴AC=10(勾股定理);
又∵AC=AB=6
∴CF=4;
∵CG⊥BF,AB⊥BF,
∴CG∥AB,
∴
=
=
=
,(平行线截线段成比例),
∴FG=
,
由勾股定理得:CG=
=
,
∴BG=BF-FG=8-
=
,
在Rt△BCG中,tan∠CBF=
=
.

解:(1)BF为⊙O的切线.
证明:连接AE.
∵AB为⊙O的直径,
∴∠AEB=90°(直径所对的圆周角是直角),
∴∠BAE+∠ABE=90°(直角三角形的两个锐角互余);
又∵AB=AC,AE⊥BC,
∴AE平分∠BAC,即∠BAE=∠CAE;
∵∠CAB=2∠CBF,
∴∠BAE=∠CBF,
∴∠BAE+∠ABE=∠ABE+∠CBF=90°,即AB⊥BF,
∵OB是半径,
∴BF为⊙O的切线;
(2)过点C作CG⊥BF于点G.
在Rt△ABF中,AB=6,BF=8,
∴AC=10(勾股定理);
又∵AC=AB=6
∴CF=4;
∵CG⊥BF,AB⊥BF,
∴CG∥AB,
∴
=
=
=
,(平行线截线段成比例),
∴FG=
,
由勾股定理得:CG=
=
,
∴BG=BF-FG=8-
=
,
在Rt△BCG中,tan∠CBF=
=
.