试题
题目:
(2012·黄浦区二模)如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED,延长BE交AD于点F.
(1)求证:∠BEC=∠DEC;
(2)当CE=CD时,求证:DF
2
=EF·BF.
答案
证明:(1)∵四边形ABCD是正方形,
∴BC=CD,且∠BCE=∠DCE,
又∵CE是公共边,
∴△BEC≌△DEC,
∴∠BEC=∠DEC.
(2)连接BD.
∵CE=CD,∴∠DEC=∠EDC.
∵∠BEC=∠DEC,∠BEC=∠AEF,
∴∠EDC=∠AEF.
∵∠AEF+∠FED=∠EDC+∠ECD,
∴∠FED=∠ECD.
∵四边形ABCD是正方形,
∴∠ECD=
1
2
∠BCD=45°,∠ADB=
1
2
∠ADC=45°,
∴∠ECD=∠ADB.
∴∠FED=∠ADB.
又∵∠BFD是公共角,
∴△FDE∽△FBD,
∴
EF
DF
=
DF
BF
,即DF
2
=EF·BF.
证明:(1)∵四边形ABCD是正方形,
∴BC=CD,且∠BCE=∠DCE,
又∵CE是公共边,
∴△BEC≌△DEC,
∴∠BEC=∠DEC.
(2)连接BD.
∵CE=CD,∴∠DEC=∠EDC.
∵∠BEC=∠DEC,∠BEC=∠AEF,
∴∠EDC=∠AEF.
∵∠AEF+∠FED=∠EDC+∠ECD,
∴∠FED=∠ECD.
∵四边形ABCD是正方形,
∴∠ECD=
1
2
∠BCD=45°,∠ADB=
1
2
∠ADC=45°,
∴∠ECD=∠ADB.
∴∠FED=∠ADB.
又∵∠BFD是公共角,
∴△FDE∽△FBD,
∴
EF
DF
=
DF
BF
,即DF
2
=EF·BF.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.
(1)利用正方形的性质,根据SAS即可证得:△BEC≌△DEC,从而求证;
(2)首先证明△FDE∽△FBD,根据相似三角形的对应边的比相等,即可证得
EF
DF
=
DF
BF
,即DF
2
=EF·BF.
本题考查了相似三角形的判定与性质,和正方形的性质,正确理解正方形的性质是关键.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )