正方形的性质;根据实际问题列二次函数关系式;全等三角形的判定与性质;相似三角形的判定与性质.
(1)①E、A重合时,三角形EFG的底和高都等于正方形的边长,由此可得到其面积;
②E、A不重合时;易证得△AEM≌△FDM,则EM=FM,由勾股定理易求得EM的长,即可得出EF的长;下面求MG的长,过M作MN⊥BC于N,则AB=MN=2AM,由于∠AME和∠NMG同为∠EMN的余角,由此可证得△AEM∽△NGM,根据相似三角形得到的关于AM、MN、EM、MG的比例关系式,即可求得MG的表达式,进而可由三角形的面积公式求出y、x的函数关系式;
(2)可分别作出E、A重合和E、B重合时P点的位置(即P为A与E重合时得到的对应点,P′为E与B重合时的对应点),此时可发现PP′正好是△EGG′的中位线,则P点运动的距离为GG′的一半;Rt△BMG′中,MG⊥BG′,易证得∠MBG=∠GMG′,根据∠MBG的正切值即可得到GG′、GM(即正方形的边长)的比例关系,由此得解.
此题考查了正方形的性质,等腰三角形、相似三角形、全等三角形的判定和性质以及二次函数等知识;综合性强,难度较大.
压轴题.