圆周角定理;相似三角形的判定与性质.
(1)要证D是BC的中点,已知AB=AC,即证AD⊥BC即可,根据圆周角定理,AB是直径,所以∠ADB=90°,即可得证.
(2)欲证△BEC∽△ADC,通过观察发现两个三角形已经具备一组角对应相等,即∠AEB=∠ADC=90°,此时,再求另一角对应相等即可.
(3)由△BEC∽△ADC可证CD·BC=AC·CE,又D是BC的中点,AB=AC,即可证BC2=2AB·CE.
本题考查相似三角形的判定和性质.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.
证明题;压轴题.