相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质;平行线分线段成比例.
(1)四边形DBFE是平行四边形,利用底×高可求面积;△EFC的面积利用底×高的一半计算;△ADE的面积,可以先过点A作AH⊥BC,交DE于G,交BC于H,即AG是△ADE的高,AH是△ABC的高,利用平行线分线段成比例定理的推论,可知△ADE∽△ABC,利用相似三角形的面积比等于相似比的平方,可求AG,再利用三角形的面积公式计算即可;
(2)由于DE∥BC,EF∥AB,可知四边形DBFE是·,同时,利用平行线分线段成比例定理的推论,可知△ADE∽△ABC,△EFC∽△ABC,从而易得△ADE∽△EFC,利用相似三角形的面积比等于相似比的平方,可得S
1:S
2=a2:b2,由于S
1=
bh,那么可求S
2,从而易求4S
1S
2,又S=ah,容易证出结论;
(3)过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形,容易证出△DBE≌△GHF,那么△GHC的面积等于8,再利用(2)中的结论,可求·DBHG的面积,从而可求△ABC的面积.
本题利用了平行四边形、三角形的面积公式,还利用了平行四边形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理的推论、全等三角形的判定和性质等知识.
综合题;压轴题.