答案
证明:(1)∵AB=AC,
∴∠ABC=∠ACB.(1分)
∵DE∥BC,
∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.(1分)
∴∠BDE=∠CED.(1分)
∵∠EDF=∠ABE,
∴△DEF∽△BDE.(2分)
(2)由△DEF∽△BDE,得
=.(1分)
∴DE
2=DB·EF.(1分)
由△DEF∽△BDE,得∠BED=∠DFE.(1分)
∵∠GDE=∠EDF,
∴△GDE∽△EDF.(1分)
∴
=.(1分)
∴DE
2=DG·DF.(1分)
∴DG·DF=DB·EF.(1分)
证明:(1)∵AB=AC,
∴∠ABC=∠ACB.(1分)
∵DE∥BC,
∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.(1分)
∴∠BDE=∠CED.(1分)
∵∠EDF=∠ABE,
∴△DEF∽△BDE.(2分)
(2)由△DEF∽△BDE,得
=.(1分)
∴DE
2=DB·EF.(1分)
由△DEF∽△BDE,得∠BED=∠DFE.(1分)
∵∠GDE=∠EDF,
∴△GDE∽△EDF.(1分)
∴
=.(1分)
∴DE
2=DG·DF.(1分)
∴DG·DF=DB·EF.(1分)