试题
题目:
(2011·无锡一模)如图①,将一个内角为120°的菱形纸片沿较长对角线剪开,得到图②的两张全等的三角形纸片,将这两张三角形纸片摆放成图③的形式,点B、F、C、D在同一条直线上,AB分别交DE、EF于点P、M,AC交DE于点N.
(1)找出图③中的一对全等三角形(△ABC与△DEF全等除外),并加以证明;
(2)当P为AB的中点时,求△APN与△DCN的面积比.
答案
解:(1)答案不唯一,如:△APN≌△EPM.
证明:由菱形性质得∠A=∠B=∠D=∠E,
∴PB=PD.
∵AB=DE,
∴PA=PE.
∵∠EPM=∠APN,
∴△APN≌△EPM.(3分)
(2)连接CP.
∵CA=CB,P为AB中点,
∴CP⊥AB.
∵∠ACB=∠DFE=120°,AC=BC=DF=FE,
∴∠D=∠A=∠B=30°.
∴∠APN=60°.
∴∠CNP=90°,∠CPN=30°.
∴PN:CN=
3
:1.
∵∠D=∠A,∠ANP=∠DNC,
∴△ANP∽△DNC.
∴S
△ANP
:S
△DNC
=PN
2
:CN
2
=3:1.
即△APN与△DCN的面积比为3:1.(7分)
解:(1)答案不唯一,如:△APN≌△EPM.
证明:由菱形性质得∠A=∠B=∠D=∠E,
∴PB=PD.
∵AB=DE,
∴PA=PE.
∵∠EPM=∠APN,
∴△APN≌△EPM.(3分)
(2)连接CP.
∵CA=CB,P为AB中点,
∴CP⊥AB.
∵∠ACB=∠DFE=120°,AC=BC=DF=FE,
∴∠D=∠A=∠B=30°.
∴∠APN=60°.
∴∠CNP=90°,∠CPN=30°.
∴PN:CN=
3
:1.
∵∠D=∠A,∠ANP=∠DNC,
∴△ANP∽△DNC.
∴S
△ANP
:S
△DNC
=PN
2
:CN
2
=3:1.
即△APN与△DCN的面积比为3:1.(7分)
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质.
(1)我们可以利用菱形的性质及全等三角形的判定方法AAS判定△APN≌△EPM.
(2)要求△APN与△DCN的面积比,我们可以根据菱形的性质及已知,得到PN:CN=
3
,根据相似三角形的判定,得到△ANP∽△DNC,即△APN与△DCN的面积比为3:1.
此题考查了学生对全等三角形的判定,菱形的性质及相似三角形的判定等知识点的掌握情况.
证明题;压轴题;开放型.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )