切线的性质;勾股定理;垂径定理;相似三角形的判定与性质.
(1)由AB与小圆相切,CD与大圆相切,根据切线性质可得∠OAB与∠OCD相等,都为直角,又BC与AB垂直,根据垂直定义得到∠CBA与∠CBD都为直角,则∠1+∠OBC与∠2+∠OCB和都为90°,由OC=OB,根据“等边对等角”得到∠OBC=∠OCB,根据等角的余角相等,得到∠1=∠2,由两对对应角相等的两三角形相似得证;
(2)①过O作OF垂直于BC,由三个角都为直角的四边形为矩形得到ABOF为矩形,根据矩形的对边相等,得到FB=OA,由OA的长得到FB的长,又BC为大圆的弦,利用垂径定理得到BC=2BF,从而求出BC的长,在直角三角形OAB中,由OA=1,OB=x,利用勾股定理表示出AB,由(1)得到的三角形相似得比例,把相应的值代入即可得到y与x的关系式;
②当BE与小圆相切时,根据切线性质得到OE与BE垂直,由OE和OC表示出EC的长,根据切线长定理得到BE=BA,表示出EB,在直角三角形ECB中,由EC,EB及BC的长,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值.
此题考查了切线的性质,相似三角形的判定与性质,勾股定理及垂径定理.遇到切线,连接圆心与切点,是常常连接的辅助线,借助图形,由切线的性质构造直角三角形,然后利用勾股定理解决问题.熟练掌握切线的性质是解本题的关键.
代数几何综合题;压轴题.