相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.
(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;
(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.
本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.
几何综合题;压轴题.