试题

题目:
(2011·莆田)已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断
1
DM
+
1
DN
是否为定值?若是,请求出该定值;若不是,请说明理由.
青果学院
答案
青果学院(1)证明:如图1,分别连接OE、0F,
∵四边形ABCD是菱形,
∴AC⊥BD,BD平分∠ADC.AD=DC=BC,
∴∠COD=∠COB=∠AOD=90°.
∠ADO=
1
2
∠ADC=
1
2
×60°=30°,
又∵E、F分别为DC、CB中点,
∴OE=
1
2
CD,OF=
1
2
BC,AO=
1
2
AD,
∴0E=OF=OA,
∴点O即为△AEF的外心.

(2)解:①猜想:外心P一定落在直线DB上.
青果学院证明:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,
∴∠PIE=∠PJD=90°,
∵∠ADC=60°,
∴∠IPJ=360°-∠PIE-∠PJD-∠JDI=120°,
∵点P是等边△AEF的外心,
∴∠EPA=120°,PE=PA,
∴∠IPJ=∠EPA,
∴∠IPE=∠JPA,
∴△PIE≌△PJA,
∴PI=PJ,
∴点P在∠ADC的平分线上,即点P落在直线DB上.
1
DM
+
1
DN
为定值2.
当AE⊥DC时.△AEF面积最小,
此时点E、F分别为DC、CB中点.
连接BD、AC交于点P,由(1)
可得点P即为△AEF的外心.
如图3.设MN交BC于点G,
设DM=x,DN=y(x≠0.y≠O),则CN=y-1,
∵BC∥DA,
∴△GBP≌△MDP.
∴BG=DM=x.青果学院
∴CG=1-x
∵BC∥DA,
∴△NCG∽△NDM,
CN
DN
=
CG
DM

y-1
y
=
1-x
x

∴x+y=2xy,
1
x
+
1
y
=2,
1
DM
+
1
DN
=2.
青果学院(1)证明:如图1,分别连接OE、0F,
∵四边形ABCD是菱形,
∴AC⊥BD,BD平分∠ADC.AD=DC=BC,
∴∠COD=∠COB=∠AOD=90°.
∠ADO=
1
2
∠ADC=
1
2
×60°=30°,
又∵E、F分别为DC、CB中点,
∴OE=
1
2
CD,OF=
1
2
BC,AO=
1
2
AD,
∴0E=OF=OA,
∴点O即为△AEF的外心.

(2)解:①猜想:外心P一定落在直线DB上.
青果学院证明:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,
∴∠PIE=∠PJD=90°,
∵∠ADC=60°,
∴∠IPJ=360°-∠PIE-∠PJD-∠JDI=120°,
∵点P是等边△AEF的外心,
∴∠EPA=120°,PE=PA,
∴∠IPJ=∠EPA,
∴∠IPE=∠JPA,
∴△PIE≌△PJA,
∴PI=PJ,
∴点P在∠ADC的平分线上,即点P落在直线DB上.
1
DM
+
1
DN
为定值2.
当AE⊥DC时.△AEF面积最小,
此时点E、F分别为DC、CB中点.
连接BD、AC交于点P,由(1)
可得点P即为△AEF的外心.
如图3.设MN交BC于点G,
设DM=x,DN=y(x≠0.y≠O),则CN=y-1,
∵BC∥DA,
∴△GBP≌△MDP.
∴BG=DM=x.青果学院
∴CG=1-x
∵BC∥DA,
∴△NCG∽△NDM,
CN
DN
=
CG
DM

y-1
y
=
1-x
x

∴x+y=2xy,
1
x
+
1
y
=2,
1
DM
+
1
DN
=2.
考点梳理
相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;菱形的性质;三角形的外接圆与外心.
(1)首先分别连接OE、0F,由四边形ABCD是菱形,即可得AC⊥BD,BD平分∠ADC.AO=DC=BC,又由E、F分别为DC、CB中点,即可证得0E=OF=OA,则可得点O即为△AEF的外心;
(2)①首先分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,即可求得∠IPJ的度数,又由点P是等边△AEF的外心,易证得△PIE≌△PJA,可得PI=PJ,即点P在∠ADC的平分线上,即点P落在直线DB上.
②当AE⊥DC时.△AEF面积最小,此时点E、F分别为DC、CB中点.连接BD、AC交于点P,由(1)可得点P即为△AEF的外心.由△GBP∽△MDP,即可
1
DM
+
1
DN
为定值2.
此题考查了相似三角形的判定与性质,三角形的外心的判定与性质,以及菱形的性质等知识.此题综合性很强,图形也比较复杂,解题的关键是方程思想与数形结合思想的应用.
压轴题.
找相似题