题目:

(2011·泉州)如图,在直角坐标系中,点A的坐标为(0,8),点 B(b,t)在直线x=b上运动,点D、E、F分别为OB、0A、AB的中点,其中b是大于零的常数.
(1)判断四边形DEFB的形状.并证明你的结论;
(2)试求四边形DEFB的面积S与b的关系式;
(3)设直线x=b与x轴交于点C,问:四边形DEFB能不能是矩形?若能.求出t的值;若不能,说明理由.
答案
解:(1)四边形DEFB是平行四边形.
证明:∵D、E分别是OB、OA的中点,
∴DE∥AB,同理,EF∥OB,
∴四边形DEFB是平行四边形;
(2)解法一:∵S
△AOB=
×8×b=4b,
由(1)得EF∥OB,∴△AEF∽△AOB,
∴
=(
)
2,即S
△AEF=
S
△AOB=b,同理S
△ODE=b,
∴S=S
△AOB-S
△AEF-S
△ODE=4b-b-b=2b,即S=2b(b>0);

解法二:如图,连接BE,S
△AOB=
×8×b=4b,
∵E、F分别为OA、AB的中点,
∴S
△AEF=
S
△AEB=
S
△AOB=b,
同理S
△EOD=b,
∴S=S
△AOB-S
△AEF-S
△ODE=4b-b-b=2b,
即S=2b(b>0);
(3)解法一:以E为圆心,OA长为直径的圆记为⊙E,
①当直线x=b与⊙E相切或相交时,若点B是切点或交点,则∠ABO=90°,由(1)知,四边形DEFB是矩形,
此时0<b≤4,可得△AOB∽△OBC,
∴
=
,即OB
2=OA·BC=8t,
在Rt△OBC中,OB
2=BC
2+OC
2=t
2+b
2,
∴t
2+b
2=8t,
∴t
2-8t+b
2=0,
解得t=4±
,
②当直线x=b与⊙E相离时,∠ABO≠90°,
∴四边形DEFB不是矩形,
综上所述:当0<b≤4时,四边形DEFB是矩形,这时,t=4±
,当b>4时,四边形DEFB不是矩形;
解法二:由(1)知,当∠ABO=90°时,四边形DEFB是矩形,
∵∠COB+∠AOB=90°,∠OAB+∠AOB=90°,
∴∠COB=∠OAB,
又∵∠ABO=∠OCB=90°,
∴Rt△OCB∽Rt△ABO,
∴
=
,即OB
2=OA·BC,

又OB
2=BC
2+OC
2=t
2+b
2,OA=8,BC=t(t>0),
∴t
2+b
2=8t,
∴(t-4)
2=16-b
2,
①当16-b
2≥0时,解得t=4±
,此时四边形DEFB是矩形,
②当16-b
2<0时,t无实数解,此时四边形DEFB不是矩形,
综上所述:当16-b
2≥0时,四边形DEFB是矩形,此时t=4±
,当16-b
2<0时,四边形DEFB不是矩形;
解法三:如图,过点A作AM⊥BC,垂足为M,
在Rt△AMB中,AB
2=AM
2+BM
2=b
2+(8-t)
2,
在Rt△OCB中,OB
2=OC
2+BC
2=b
2+t
2,
在△OAB中,当AB
2+OB
2=OA
2时,∠ABO=90°,则四边形DEFB为矩形,
∴b
2+(8-t)
2+b
2+t
2=8
2,
化简得t
2-8t=-b
2,配方得(t-4)
2=16-b
2,其余同解法二.
解:(1)四边形DEFB是平行四边形.
证明:∵D、E分别是OB、OA的中点,
∴DE∥AB,同理,EF∥OB,
∴四边形DEFB是平行四边形;
(2)解法一:∵S
△AOB=
×8×b=4b,
由(1)得EF∥OB,∴△AEF∽△AOB,
∴
=(
)
2,即S
△AEF=
S
△AOB=b,同理S
△ODE=b,
∴S=S
△AOB-S
△AEF-S
△ODE=4b-b-b=2b,即S=2b(b>0);

解法二:如图,连接BE,S
△AOB=
×8×b=4b,
∵E、F分别为OA、AB的中点,
∴S
△AEF=
S
△AEB=
S
△AOB=b,
同理S
△EOD=b,
∴S=S
△AOB-S
△AEF-S
△ODE=4b-b-b=2b,
即S=2b(b>0);
(3)解法一:以E为圆心,OA长为直径的圆记为⊙E,
①当直线x=b与⊙E相切或相交时,若点B是切点或交点,则∠ABO=90°,由(1)知,四边形DEFB是矩形,
此时0<b≤4,可得△AOB∽△OBC,
∴
=
,即OB
2=OA·BC=8t,
在Rt△OBC中,OB
2=BC
2+OC
2=t
2+b
2,
∴t
2+b
2=8t,
∴t
2-8t+b
2=0,
解得t=4±
,
②当直线x=b与⊙E相离时,∠ABO≠90°,
∴四边形DEFB不是矩形,
综上所述:当0<b≤4时,四边形DEFB是矩形,这时,t=4±
,当b>4时,四边形DEFB不是矩形;
解法二:由(1)知,当∠ABO=90°时,四边形DEFB是矩形,
∵∠COB+∠AOB=90°,∠OAB+∠AOB=90°,
∴∠COB=∠OAB,
又∵∠ABO=∠OCB=90°,
∴Rt△OCB∽Rt△ABO,
∴
=
,即OB
2=OA·BC,

又OB
2=BC
2+OC
2=t
2+b
2,OA=8,BC=t(t>0),
∴t
2+b
2=8t,
∴(t-4)
2=16-b
2,
①当16-b
2≥0时,解得t=4±
,此时四边形DEFB是矩形,
②当16-b
2<0时,t无实数解,此时四边形DEFB不是矩形,
综上所述:当16-b
2≥0时,四边形DEFB是矩形,此时t=4±
,当16-b
2<0时,四边形DEFB不是矩形;
解法三:如图,过点A作AM⊥BC,垂足为M,
在Rt△AMB中,AB
2=AM
2+BM
2=b
2+(8-t)
2,
在Rt△OCB中,OB
2=OC
2+BC
2=b
2+t
2,
在△OAB中,当AB
2+OB
2=OA
2时,∠ABO=90°,则四边形DEFB为矩形,
∴b
2+(8-t)
2+b
2+t
2=8
2,
化简得t
2-8t=-b
2,配方得(t-4)
2=16-b
2,其余同解法二.