试题

题目:
青果学院(2011·温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.
(1)当b=3时,
①求直线AB的解析式;
②若点P′的坐标是(-1,m),求m的值;
(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;
(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.
答案
解:(1)①设直线AB的解析式为y=kx+3,
把x=-4,y=0代入得:-4k+3=0,
∴k=
3
4

∴直线的解析式是:y=
3
4
x+3,
②由已知得点P的坐标是(1,m),
∴m=
3
4
×1+3=
15
4


(2)∵PP′∥AC,
△PP′D∽△ACD,
P′D
DC
=
P′P
CA
,即
2a
a+4
=
1
3
青果学院
∴a=
4
5


(3)以下分三种情况讨论.
①当点P在第一象限时,
1)若∠AP′C=90°,P′A=P′C(如图1)
过点P′作P′H⊥x轴于点H.青果学院
∴PP′=CH=AH=P′H=
1
2
AC.
∴2a=
1
2
(a+4)
∴a=
4
3

∵P′H=PC=
1
2
AC,△ACP∽△AOB
OB
OA
=
PC
AC
=
1
2
,即
b
4
=
1
2

∴b=2

2)若∠P′AC=90°,(如图2),则四边形P′ACP是矩形,则PP′=AC.青果学院
若△P′CA为等腰直角三角形,则:P′A=CA,
∴2a=a+4
∴a=4
∵P′A=PC=AC,△ACP∽△AOB
OB
OA
=
PC
AC
=1,即
b
4
=1
∴b=4

3)若∠P′CA=90°,
则点P′,P都在第一象限内,这与条件矛盾.
∴△P′CA不可能是以C为直角顶点的等腰直角三角形.青果学院
②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形;
③当P在第三象限时,∠P′AC为钝角(如图4),此时△P′CA不可能是等腰直角三角形.
所有满足条件的a,b的值为:
a=
4
3
b=2
a=4
b=4

解:(1)①设直线AB的解析式为y=kx+3,
把x=-4,y=0代入得:-4k+3=0,
∴k=
3
4

∴直线的解析式是:y=
3
4
x+3,
②由已知得点P的坐标是(1,m),
∴m=
3
4
×1+3=
15
4


(2)∵PP′∥AC,
△PP′D∽△ACD,
P′D
DC
=
P′P
CA
,即
2a
a+4
=
1
3
青果学院
∴a=
4
5


(3)以下分三种情况讨论.
①当点P在第一象限时,
1)若∠AP′C=90°,P′A=P′C(如图1)
过点P′作P′H⊥x轴于点H.青果学院
∴PP′=CH=AH=P′H=
1
2
AC.
∴2a=
1
2
(a+4)
∴a=
4
3

∵P′H=PC=
1
2
AC,△ACP∽△AOB
OB
OA
=
PC
AC
=
1
2
,即
b
4
=
1
2

∴b=2

2)若∠P′AC=90°,(如图2),则四边形P′ACP是矩形,则PP′=AC.青果学院
若△P′CA为等腰直角三角形,则:P′A=CA,
∴2a=a+4
∴a=4
∵P′A=PC=AC,△ACP∽△AOB
OB
OA
=
PC
AC
=1,即
b
4
=1
∴b=4

3)若∠P′CA=90°,
则点P′,P都在第一象限内,这与条件矛盾.
∴△P′CA不可能是以C为直角顶点的等腰直角三角形.青果学院
②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形;
③当P在第三象限时,∠P′AC为钝角(如图4),此时△P′CA不可能是等腰直角三角形.
所有满足条件的a,b的值为:
a=
4
3
b=2
a=4
b=4
考点梳理
相似三角形的判定与性质;待定系数法求一次函数解析式;等腰直角三角形.
(1)①利用待定系数法即可求得函数的解析式;
②把(-1,m)代入函数解析式即可求得m的值;
(2)可以证明△PP′D∽△ACD,根据相似三角形的对应边的比相等,即可求解;
(3)分P在第一,二,三象限,三种情况进行讨论.利用相似三角形的性质即可求解.
本题主要考查了梯形的性质,相似三角形的判定和性质以及一次函数的综合应用,要注意的是(3)中,要根据P点的不同位置进行分类求解.
压轴题.
找相似题