答案

证明:
∵∠ACB=90°,CE⊥AB,
∴∠ACE+∠BCE=90°,∠ACE+∠CAE=90°,
∴∠CAE=∠BCE,
∴Rt△ACE∽Rt△CBE;(1分)
∴
=;(1分)
∴CE
2=AE·BE;(1分)
又∵BG⊥AP,CE⊥AB,
∴∠DEB=∠DGP=∠PEA=90°,(1分)
∵∠1=∠2,
∴∠P=∠3(1分)
∴△AEP∽△DEB (1分)
∴
=(1分)
∴PE·DE=AE·BE(1分)
∴CE
2=PE·DE.(1分)

证明:
∵∠ACB=90°,CE⊥AB,
∴∠ACE+∠BCE=90°,∠ACE+∠CAE=90°,
∴∠CAE=∠BCE,
∴Rt△ACE∽Rt△CBE;(1分)
∴
=;(1分)
∴CE
2=AE·BE;(1分)
又∵BG⊥AP,CE⊥AB,
∴∠DEB=∠DGP=∠PEA=90°,(1分)
∵∠1=∠2,
∴∠P=∠3(1分)
∴△AEP∽△DEB (1分)
∴
=(1分)
∴PE·DE=AE·BE(1分)
∴CE
2=PE·DE.(1分)