题目:

(2010·荔湾区模拟)如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°不变.PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:①当y最小值时,判断△PQC的形状,并说明理由.②当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数.
答案
(1)证明:∵△MBC是等边三角形,
∴MB=MC,∠MBC=∠MCB=60°,
∵M是AD中点,
∴AM=MD
∵AD∥BC,
∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.
∴△AMB≌△DMC,(2分)
∴AB=DC,
∴梯形ABCD是等腰梯形.(3分)
(2)解:在等边三角形MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,
∴∠BMP+∠BPM=∠BPM+∠QPC=120°,
∴∠BMP=∠QPC,
∴△BMP∽△CPQ,
∴PC:BM=CQ:BP(5分)
∵PC=x,MQ=y,则BP=4-x,QC=4-y,
∴
=
,
∴y=
x
2-x+4=
(x-2)
2+3,
即MQ的最小值为3;(7分)
(3)解:①△PQC为直角三角形,
由(2)知,当MQ取最小值时,x=PC=2.
∴P是BC的中点,MP⊥BC,而∠MPQ=60°,
∴∠CPQ=30°,
∴∠PQC=90°,(9分)
②当BP=1时,有BP平行且等于AM,BP平行且等于MD,则四边形ABPM四边形MBPD均为平行四边形.
当BP=3时,
∵PC平行且等于AM,PC平行且等于MD,
∴四边形MPCD和四边形APCM均为平行四边形.
∴当BP=1或BP=3时,以点P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形,
此时平行四边形有2个.(11分)
(1)证明:∵△MBC是等边三角形,
∴MB=MC,∠MBC=∠MCB=60°,
∵M是AD中点,
∴AM=MD
∵AD∥BC,
∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.
∴△AMB≌△DMC,(2分)
∴AB=DC,
∴梯形ABCD是等腰梯形.(3分)
(2)解:在等边三角形MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,
∴∠BMP+∠BPM=∠BPM+∠QPC=120°,
∴∠BMP=∠QPC,
∴△BMP∽△CPQ,
∴PC:BM=CQ:BP(5分)
∵PC=x,MQ=y,则BP=4-x,QC=4-y,
∴
=
,
∴y=
x
2-x+4=
(x-2)
2+3,
即MQ的最小值为3;(7分)
(3)解:①△PQC为直角三角形,
由(2)知,当MQ取最小值时,x=PC=2.
∴P是BC的中点,MP⊥BC,而∠MPQ=60°,
∴∠CPQ=30°,
∴∠PQC=90°,(9分)
②当BP=1时,有BP平行且等于AM,BP平行且等于MD,则四边形ABPM四边形MBPD均为平行四边形.
当BP=3时,
∵PC平行且等于AM,PC平行且等于MD,
∴四边形MPCD和四边形APCM均为平行四边形.
∴当BP=1或BP=3时,以点P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形,
此时平行四边形有2个.(11分)