试题
题目:
(2012·达州)如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.
(1)求证:PC是⊙O的切线.
(2)若AF=1,OA=
2
2
,求PC的长.
答案
(1)证明:连接OC,
∵OE⊥AC,
∴AE=CE,FA=FC,
∴∠FAC=∠FCA,
∵OA=OC(圆的半径相等),
∴∠OAC=∠OCA,
∴∠OAC+∠FAC=∠OCA+∠FCA,即∠FAO=∠FCO,
∵FA与⊙O相切,且AB是⊙O的直径,
∴FA⊥AB,
∴∠FCO=∠FAO=90°,
∵CO是半径,
∴PC是⊙O的切线;
(2)解:∵PC是⊙O的切线,
∴∠PCO=90°,
又∵∠FPA=∠OPC,∠PAF=90°,
∴△PAF∽△PCO,
∴
PA
PC
=
AF
CO
∵CO=OA=
2
2
,AF=1,
∴PC=
2
2
PA,
设PA=x,则PC=
2
2
x
.
在Rt△PCO中,由勾股定理得:
(2
2
x
)
2
+(2
2
)
2
=(x+2
2
)
2
,
解得:
x=
4
2
7
,
∴PC=2
2
×
4
2
7
=
16
7
.
(1)证明:连接OC,
∵OE⊥AC,
∴AE=CE,FA=FC,
∴∠FAC=∠FCA,
∵OA=OC(圆的半径相等),
∴∠OAC=∠OCA,
∴∠OAC+∠FAC=∠OCA+∠FCA,即∠FAO=∠FCO,
∵FA与⊙O相切,且AB是⊙O的直径,
∴FA⊥AB,
∴∠FCO=∠FAO=90°,
∵CO是半径,
∴PC是⊙O的切线;
(2)解:∵PC是⊙O的切线,
∴∠PCO=90°,
又∵∠FPA=∠OPC,∠PAF=90°,
∴△PAF∽△PCO,
∴
PA
PC
=
AF
CO
∵CO=OA=
2
2
,AF=1,
∴PC=
2
2
PA,
设PA=x,则PC=
2
2
x
.
在Rt△PCO中,由勾股定理得:
(2
2
x
)
2
+(2
2
)
2
=(x+2
2
)
2
,
解得:
x=
4
2
7
,
∴PC=2
2
×
4
2
7
=
16
7
.
考点梳理
考点
分析
点评
专题
切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质.
(1)连接OC,根据垂径定理,利用等角代换可证明∠FAC=∠FCA,然后根据切线的性质得出∠FAO=90°,然后即可证明结论.
(2)先证明△PAF∽△PCO,利用相似三角形的性质得出PC与PA的关系,在Rt△PCO中,利用勾股定理可得出x的值,继而也可得出PC得长.
此题考查了切线的性质、勾股定理、圆周角定理、相似三角形的判定与性质,涉及知识点较多,解答本题要求熟练掌握切线的判定定理及性质,有一定难度.
几何综合题;压轴题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )