试题
题目:
(2012·梧州)如图,AB是⊙O的直径,CO⊥AB于点O,CD是⊙O的切线,切点为D.连接BD,交OC于点E.
(1)求证:∠CDE=∠CED;
(2)若AB=13,BD=12,求DE的长.
答案
(1)证明:连接OD,
∵CD是⊙O的切线,切点为D.
∴∠ODC=90°,
∵OD=OB,∴∠B=∠ODB,
∵OC⊥AB,
∴∠CED=∠OEB=90°-∠B,
∵∠CDE=90°-∠ODB,
∴∠CDE=∠CED;
(2)连接AD,
∵AB是⊙O的直径,
∴∠AOD=90°,
∵AB=13,
∴OB=
13
2
,
∵∠ADB=∠BOE,∠B=∠B,
∴△ABD∽△EBO,
∴
AB
EB
=
DB
BO
.
∴
13
EB
=
12
13
2
,
∴EB=
169
24
,
∴DE=BD-EB=
119
24
.
(1)证明:连接OD,
∵CD是⊙O的切线,切点为D.
∴∠ODC=90°,
∵OD=OB,∴∠B=∠ODB,
∵OC⊥AB,
∴∠CED=∠OEB=90°-∠B,
∵∠CDE=90°-∠ODB,
∴∠CDE=∠CED;
(2)连接AD,
∵AB是⊙O的直径,
∴∠AOD=90°,
∵AB=13,
∴OB=
13
2
,
∵∠ADB=∠BOE,∠B=∠B,
∴△ABD∽△EBO,
∴
AB
EB
=
DB
BO
.
∴
13
EB
=
12
13
2
,
∴EB=
169
24
,
∴DE=BD-EB=
119
24
.
考点梳理
考点
分析
点评
专题
切线的性质;圆周角定理;相似三角形的判定与性质.
(1)连接OD,利用切线的性质和圆的半径相等得到的等腰三角形即可证明∠CDE=∠CED;
(2)连接AD,利用圆周角定理和已知条件证明△ABD∽△EBO,利用相似三角形的性质即可求出EB的长,进而求出DE的长.
本题考查了切线的性质,圆周角定理,相似三角形的判定和性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
压轴题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )