试题
题目:
(2009·西青区一模)已知:如图,在△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(Ⅰ)求证:BD与⊙O相切;
(Ⅱ)若AD:AO=8:5,BC=2,求BD的长.
答案
(1)证明:连接OD.
∵OA=OD,
∴∠A=∠ADO.
∵∠C=90°,
∴∠CBD+∠CDB=90°.
∵∠CBD=∠A,
∴∠CDB+∠ADO=90°,
∴∠ODB=90°,
∴BD与⊙O相切;
(2)解:连接DE,
∵AE是⊙O的直径,
∴∠ADE=90°.
∵∠CBD=∠A,∠ADE=∠C,
∴△ADE∽△BCD,
∴AD:AE=BC:BD.
∵AD:AO=8:5,
∴AD:AE=8:10.
∴8:10=2:BD,
∴BD=2.5.
(1)证明:连接OD.
∵OA=OD,
∴∠A=∠ADO.
∵∠C=90°,
∴∠CBD+∠CDB=90°.
∵∠CBD=∠A,
∴∠CDB+∠ADO=90°,
∴∠ODB=90°,
∴BD与⊙O相切;
(2)解:连接DE,
∵AE是⊙O的直径,
∴∠ADE=90°.
∵∠CBD=∠A,∠ADE=∠C,
∴△ADE∽△BCD,
∴AD:AE=BC:BD.
∵AD:AO=8:5,
∴AD:AE=8:10.
∴8:10=2:BD,
∴BD=2.5.
考点梳理
考点
分析
点评
切线的判定与性质;相似三角形的判定与性质.
(1)连接OD,证明OD⊥BD.转证∠ADO+∠CDB=90°.因为∠ADO=∠A=∠CBD,∠CBD+∠CDB=90°,所以得证;
(2)AD:AO=8:5,则AD:AE=8:10.证明△BCD∽△ADE,得对应边成比例求解.
此题考查切线的判定和相似三角形的判定及性质,属常规题,难度不大.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )