试题

题目:
青果学院(2010·奉贤区三模)如图,在△ABC中,∠ACB=90°,D是AB的中点,过点B作∠CBE=∠A,BE与CD相交于点F,与AC相交于点E,
(1)求证:BE⊥CD;
(2)如果BE=CD,那么线段AC与BC之间具有怎样的数量关系?并证明你所得到的结论.
答案
解:(1)∵∠CBE=∠A,
∴∠CBE+∠EBA=∠A+∠EBA,即:∠CBA=∠BEC,
∵∠ACB=90°,D是AB的中点,
∴CD=BD,
∴∠CBA=∠DCB,
∴∠DCB=∠BEC,
∵∠DCB+∠ACD=90°,
∴∠BEC+∠ACD=90°,
∴BE⊥CD;

(2)线段AC与BC之间的数量关系是
BC
AC
=
1
2
(AC=2BC),
∵∠CBE=∠A,∠BCE=∠ACB,
∴△BCE∽△ACB,
BC
AC
=
BE
AB

∵BE=CD,
CD
AB
=
1
2

BC
AC
=
1
2

解:(1)∵∠CBE=∠A,
∴∠CBE+∠EBA=∠A+∠EBA,即:∠CBA=∠BEC,
∵∠ACB=90°,D是AB的中点,
∴CD=BD,
∴∠CBA=∠DCB,
∴∠DCB=∠BEC,
∵∠DCB+∠ACD=90°,
∴∠BEC+∠ACD=90°,
∴BE⊥CD;

(2)线段AC与BC之间的数量关系是
BC
AC
=
1
2
(AC=2BC),
∵∠CBE=∠A,∠BCE=∠ACB,
∴△BCE∽△ACB,
BC
AC
=
BE
AB

∵BE=CD,
CD
AB
=
1
2

BC
AC
=
1
2
考点梳理
相似三角形的判定与性质;直角三角形斜边上的中线.
(1)根据角之间的等量关系及中点的特点即可得出答案;
(2)根据题意易证△BCE∽△ACB,根据相似三角形比例关系即可得出结论.
本题主要考查了直角三角形斜边中线的性质及相似三角形的证明及性质,难度适中.
应用题.
找相似题