试题

题目:
青果学院如图,Rt△ABC中,CD为斜边AB上的高,DE⊥CB于E,若BE=6,CE=4,则AD=
4
3
15
4
3
15

答案
4
3
15

解:∵CD⊥AB,DE⊥BC,∴DE∥AC,
∴Rt△BDE∽Rt△BCD,∴
BD
BC
=
BE
BD

即BD2=BE·BC=6×(6+4)=60,
∴BD=2
15

∵DE∥AC,∴
BD
AD
=
BE
EC
=
6
4

解得AD=
4
3
15

故答案为
4
15
3
考点梳理
相似三角形的判定与性质;直角三角形的性质.
可由Rt△BDE∽Rt△BCD,得出BD的长,进而再由平行线分线段成比例即可求解AD的长.
本题主要考查了相似三角形的判定及性质以及平行线分线段成比例的性质,能够熟练运用.
计算题.
找相似题